Difference between revisions of "009B Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam"> Evaluate |
− | + | <span class="exam">(a) <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math> | |
− | + | <span class="exam">(b) <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math> | |
− | |||
− | |||
Line 11: | Line 9: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |How would you integrate <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx?</math> |
|- | |- | ||
| | | | ||
− | : | + | You can use <math style="vertical-align: 0px">u</math>-substitution. |
+ | |- | ||
+ | | Let <math style="vertical-align: -2px">u=x^2+x.</math> | ||
+ | |- | ||
+ | | Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math> | ||
|- | |- | ||
− | | | + | | |
+ | Thus, | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
+ | \displaystyle{\int (2x+1)\sqrt{x^2+x}~dx} & = & \displaystyle{\int \sqrt{u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{2}{3}u^{3/2}+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{2}{3}(x^2+x)^{3/2}+C.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
'''(a)''' | '''(a)''' | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We multiply the product inside the integral to get |
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{array}{rcl} | |
− | + | \displaystyle{\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt} & = & \displaystyle{\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt}\\ | |
− | + | &&\\ | |
− | + | & = & \displaystyle{\int_1^2 (8t^3+2-15t^{-3})~dt.} | |
− | + | \end{array}</math> | |
− | |||
|} | |} | ||
Line 43: | Line 51: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |We integrate to get |
|- | |- | ||
− | | | + | | <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2.</math> |
− | + | |- | |
+ | |We now evaluate to get | ||
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{array}{rcl} | |
+ | \displaystyle{\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt} & = & \displaystyle{2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{36+\frac{15}{8}-4-\frac{15}{2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{211}{8}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
+ | |||
'''(b)''' | '''(b)''' | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We use <math style="vertical-align: 0px">u</math>-substitution. |
+ | |- | ||
+ | |Let <math style="vertical-align: -2px">u=x^4+2x^2+4.</math> | ||
|- | |- | ||
− | | | + | |Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math> |
|- | |- | ||
− | | | + | |Also, we need to change the bounds of integration. |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |Plugging in our values into the equation <math style="vertical-align: -4px">u=x^4+2x^2+4,</math> we get |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -5px">u_2=2^4+2(2)^2+4=28.</math> |
|- | |- | ||
− | | | + | |Therefore, the integral becomes |
|- | |- | ||
− | | | + | | <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du.</math> |
− | |||
|} | |} | ||
− | |||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step | + | !Step 2: |
|- | |- | ||
− | | | + | |We now have |
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{array}{rcl} | |
− | + | \displaystyle{\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx} & = & \displaystyle{\frac{1}{4}\int_4^{28}\sqrt{u}~du}\\ | |
− | + | &&\\ | |
− | { | + | & = & \displaystyle{\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}}\\ |
− | + | &&\\ | |
+ | & = & \displaystyle{\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{6}((2\sqrt{7})^3-2^3).} | ||
+ | \end{array}</math> | ||
|- | |- | ||
− | | | + | |Therefore, |
|- | |- | ||
− | | | + | | <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}.</math> |
− | |||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' <math>\frac{211}{8}</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | '''( | + | | '''(b)''' <math>\frac{28\sqrt{7}-4}{3}</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:15, 9 April 2017
Evaluate
(a)
(b)
Foundations: |
---|
How would you integrate |
You can use -substitution. |
Let |
Then, |
Thus, |
|
Solution:
(a)
Step 1: |
---|
We multiply the product inside the integral to get |
|
Step 2: |
---|
We integrate to get |
We now evaluate to get |
|
(b)
Step 1: |
---|
We use -substitution. |
Let |
Then, and |
Also, we need to change the bounds of integration. |
Plugging in our values into the equation we get |
and |
Therefore, the integral becomes |
Step 2: |
---|
We now have |
|
Therefore, |
Final Answer: |
---|
(a) |
(b) |