Difference between revisions of "009B Sample Midterm 2, Problem 1"

From Math Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math>&thinsp; and the <math>x</math>-axis.
+
<span class="exam"> This problem has three parts:
  
::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and
+
<span class="exam">(a) State the Fundamental Theorem of Calculus.
  
:::<span class="exam">indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>.
+
<span class="exam">(b) Compute &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt.</math>
::<span class="exam">b) Find an expression for the area of the region <math style="vertical-align: 0px">S</math> as a limit. Do not evaluate the limit.
 
  
 +
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx.</math>
  
[[File:9AMT2_1GP.png|right|400px|frame|Approximation of integral with left endpoints is an overestimate.]]
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|Recall:
+
|'''1.''' What does Part 1 of the Fundamental Theorem of Calculus say about &nbsp;<math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt?</math>
 
|-
 
|-
 
|
 
|
::'''1.''' The height of each rectangle in the left-hand Riemann sum is given by
+
&nbsp; &nbsp; &nbsp; &nbsp; Part 1 of the Fundamental Theorem of Calculus says that
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math>
:::choosing the left endpoint of the interval.
 
 
|-
 
|-
|
+
|'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about &nbsp;<math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">a,b</math>&nbsp; are constants?
::'''2.''' The height of each rectangle in the right-hand Riemann sum is given by
 
 
|-
 
|-
 
|
 
|
:::choosing the right endpoint of the interval.
+
&nbsp; &nbsp; &nbsp; &nbsp; Part 2 of the Fundamental Theorem of Calculus says that
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">F</math>&nbsp; is any antiderivative of &nbsp;<math style="vertical-align: 0px">\sec^2x.</math>
::'''3.''' See the page on [[Riemann_Sums|'''Riemann Sums''']] for more information.
 
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
  
 
'''(a)'''
 
'''(a)'''
 +
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}.</math>  Since our interval is <math style="vertical-align: -5px">[1,5]</math> and we are using <math style="vertical-align: -1px">4</math> rectangles, each rectangle has width <math style="vertical-align: -1px">1.</math> Since the problem doesn't specify, we can choose either right- or left-endpoints.  Choosing left-endpoints, the Riemann sum is
+
|The Fundamental Theorem of Calculus has two parts.  
 +
|-
 +
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|
+
|Let &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and let &nbsp;<math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
::<math>1\cdot (f(1)+f(2)+f(3)+f(4)).</math>
+
|-
 +
|Then, &nbsp;<math style="vertical-align: 0px">F</math>&nbsp; is a differentiable function on &nbsp;<math style="vertical-align: -5px">(a,b)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">F'(x)=f(x).</math>
 
|}
 
|}
  
Line 45: Line 46:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Thus, the left-endpoint Riemann sum is
+
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
|
+
|Let &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and let &nbsp;<math style="vertical-align: 0px">F</math>&nbsp; be any antiderivative of &nbsp;<math style="vertical-align: -4px">f.</math>
::<math>\begin{array}{rcl}
+
|-
\displaystyle{1\cdot (f(1)+f(2)+f(3)+f(4))} & = & \displaystyle{\bigg(1+\frac{1}{4}+\frac{1}{9}+{1}{16}\bigg)}\\
+
|Then,
&&\\
 
& = & \displaystyle{\frac{205}{144}.}\\
 
\end{array}</math>
 
 
|-
 
|-
|The left-endpoint Riemann sum overestimates the area of <math style="vertical-align: 0px">S.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|}
 
|}
  
 
'''(b)'''
 
'''(b)'''
 +
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the left-endpoint Riemann sum for <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}.</math>
+
|Let &nbsp;<math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt.</math>  
 
|-
 
|-
|The width of each rectangle is  
+
|The problem is asking us to find &nbsp;<math style="vertical-align: -5px">F'(x).</math>
 
|-
 
|-
|
+
|Let &nbsp;<math style="vertical-align: -5px">g(x)=\cos(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt.</math>
::<math style="vertical-align: -13px">\Delta x=\frac{5-1}{n}=\frac{4}{n}.</math>
+
|-
 +
|Then,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F(x)=G(g(x)).</math>
 
|}
 
|}
  
Line 72: Line 74:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|So, the left-endpoint Riemann sum is
+
|If we take the derivative of both sides of the last equation,  
 +
|-
 +
|we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F'(x)=G'(g(x))g'(x)</math>
 
|-
 
|-
|
+
|by the Chain Rule.
::<math>\Delta x \bigg(f(1)+f\bigg(1+\frac{4}{n}\bigg)+f\bigg(1+2\frac{4}{n}\bigg)+\ldots +f\bigg(1+(n-1)\frac{4}{n}\bigg)\bigg).</math>
+
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, &nbsp;<math style="vertical-align: -5px">g'(x)=-\sin(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">G'(x)=\sin(x)</math>
 +
|-
 +
|by the '''Fundamental Theorem of Calculus, Part 1'''.
 +
|-
 +
|Since
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -4px">G'(g(x))=\sin(g(x))=\sin(\cos(x)),</math>
 +
|-
 +
|we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x)).</math>
 +
|}
 +
 
 +
'''(c)'''
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1: &nbsp;
 
|-
 
|-
|Now, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit. 
+
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have
 
|-
 
|-
|So, the area of <math style="vertical-align: 0px">S</math> is equal to
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}.</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 
|-
 
|-
|
+
|So, we get
::<math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}f\bigg(1+i\frac{4}{n}\bigg)\,=\,\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}.</math>
+
|-
 +
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' The left-endpoint Riemann sum is <math style="vertical-align: -20px">\frac{205}{144}</math>, which overestimates the area of <math style="vertical-align: 0px">S</math>.  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; See solution above.
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' Using left-endpoint Riemann sums:  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -5px">\sin(\cos(x))\cdot(-\sin(x))</math>
 
|-
 
|-
|
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math style="vertical-align: -3px">1</math>
::<math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}</math>
 
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:14, 9 April 2017

This problem has three parts:

(a) State the Fundamental Theorem of Calculus.

(b) Compute  

(c) Evaluate  


Foundations:  
1. What does Part 1 of the Fundamental Theorem of Calculus say about  

        Part 1 of the Fundamental Theorem of Calculus says that

       
2. What does Part 2 of the Fundamental Theorem of Calculus say about    where    are constants?

        Part 2 of the Fundamental Theorem of Calculus says that

          where    is any antiderivative of  


Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let    be continuous on    and let  
Then,    is a differentiable function on    and  
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let    be continuous on    and let    be any antiderivative of  
Then,
       

(b)

Step 1:  
Let  
The problem is asking us to find  
Let    and  
Then,
       
Step 2:  
If we take the derivative of both sides of the last equation,
we get
       
by the Chain Rule.
Step 3:  
Now,    and  
by the Fundamental Theorem of Calculus, Part 1.
Since
       
we have
       

(c)

Step 1:  
Using the Fundamental Theorem of Calculus, Part 2, we have
       
Step 2:  
So, we get
       


Final Answer:  
    (a)     See solution above.
    (b)    
    (c)    

Return to Sample Exam