Difference between revisions of "009B Sample Midterm 1, Problem 5"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | <span class="exam">Let <math>f(x)=1-x^2</math>. | + | <span class="exam">Let <math>f(x)=1-x^2</math>. |
+ | |||
+ | <span class="exam">(a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. | ||
+ | |||
+ | <span class="exam">(b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes. | ||
+ | |||
+ | <span class="exam">(c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit. | ||
− | |||
− | |||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''1.''' The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval. |
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |'''2.''' The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval. |
− | |||
|- | |- | ||
− | | | + | |'''3.''' See the Riemann sums (insert link) for more information. |
− | |||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 26: | Line 25: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using | + | |Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. |
+ | |- | ||
+ | |So, the left-hand Riemann sum is | ||
|- | |- | ||
− | | | + | | <math style="vertical-align: 0px">1(f(0)+f(1)+f(2)).</math> |
− | |||
|} | |} | ||
Line 37: | Line 37: | ||
|Thus, the left-hand Riemann sum is | |Thus, the left-hand Riemann sum is | ||
|- | |- | ||
− | | <math | + | | |
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{1(f(0)+f(1)+f(2))} & = & \displaystyle{1+0+-3}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-2.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 44: | Line 49: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using | + | |Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. |
|- | |- | ||
− | | | + | |So, the right-hand Riemann sum is |
− | |||
|- | |- | ||
− | | | + | | <math style="vertical-align: -5px">1(f(1)+f(2)+f(3)).</math> |
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 56: | Line 60: | ||
|Thus, the right-hand Riemann sum is | |Thus, the right-hand Riemann sum is | ||
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{array}{rcl} | |
+ | \displaystyle{1(f(1)+f(2)+f(3))} & = & \displaystyle{0+-3+-8}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-11.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 64: | Line 72: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the right-hand Riemann sum for <math style="vertical-align: -5px">f(x)=1-x^2.</math> | + | |Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the right-hand Riemann sum for <math style="vertical-align: -5px">f(x)=1-x^2.</math> |
|- | |- | ||
|The width of each rectangle is | |The width of each rectangle is | ||
|- | |- | ||
− | | | + | | <math style="vertical-align: -13px">\Delta x=\frac{3-0}{n}=\frac{3}{n}.</math> |
− | |||
|} | |} | ||
Line 77: | Line 84: | ||
|So, the right-hand Riemann sum is | |So, the right-hand Riemann sum is | ||
|- | |- | ||
− | | | + | | <math style="vertical-align: -14px">\Delta x \bigg(f\bigg(1\cdot \frac{3}{n}\bigg)+f\bigg(2\cdot \frac{3}{n}\bigg)+f\bigg(3\cdot \frac{3}{n}\bigg)+\ldots +f(3)\bigg).</math> |
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |Finally, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit. |
|- | |- | ||
− | | | + | |Thus, <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> is equal to <math style="vertical-align: -21px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg).</math> |
− | |||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' <math style="vertical-align: -2px">-2</math> | + | | '''(a)''' <math style="vertical-align: -2px">-2</math> |
|- | |- | ||
− | | '''(b)''' <math style="vertical-align: -2px">-11</math> | + | | '''(b)''' <math style="vertical-align: -2px">-11</math> |
|- | |- | ||
− | | '''(c)''' <math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n} | + | | '''(c)''' <math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math> |
|} | |} | ||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:01, 9 April 2017
Let .
(a) Compute the left-hand Riemann sum approximation of with boxes.
(b) Compute the right-hand Riemann sum approximation of with boxes.
(c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
Foundations: |
---|
1. The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval. |
2. The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval. |
3. See the Riemann sums (insert link) for more information. |
Solution:
(a)
Step 1: |
---|
Since our interval is and we are using 3 rectangles, each rectangle has width 1. |
So, the left-hand Riemann sum is |
Step 2: |
---|
Thus, the left-hand Riemann sum is |
|
(b)
Step 1: |
---|
Since our interval is and we are using 3 rectangles, each rectangle has width 1. |
So, the right-hand Riemann sum is |
Step 2: |
---|
Thus, the right-hand Riemann sum is |
|
(c)
Step 1: |
---|
Let be the number of rectangles used in the right-hand Riemann sum for |
The width of each rectangle is |
Step 2: |
---|
So, the right-hand Riemann sum is |
Finally, we let go to infinity to get a limit. |
Thus, is equal to |
Final Answer: |
---|
(a) |
(b) |
(c) |