Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Math Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Find the average value of the function on the given interval.
+
<span class="exam"> Otis Taylor plots the price per share of a stock that he owns as a function of time
  
::<math>f(x)=2x^3(1+x^2)^4,~~~[0,2]</math>
+
<span class="exam">and finds that it can be approximated by the function
 +
 
 +
::<math>s(t)=t(25-5t)+18</math>
 +
 
 +
<span class="exam">where &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; is the time (in years) since the stock was purchased.
 +
 
 +
<span class="exam">Find the average price of the stock over the first five years.
  
  
Line 7: Line 13:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by  
+
|The average value of a function &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on an interval &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; is given by  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -18px">f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx.</math>
::<math>f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx.</math>
 
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 17: Line 23:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Using the formula given in Foundations, we have:
+
|This problem wants us to find the average value of &nbsp;<math style="vertical-align: -5px">s(t)</math>&nbsp; over the interval &nbsp;<math style="vertical-align: -5px">[0,5].</math>
 +
|-
 +
|Using the average value formula, we have
 
|-
 
|-
|
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: 0px">s_{\text{avg}}=\frac{1}{5-0} \int_0^5 t(25-5t)+18~dt.</math>  
::<math>\begin{array}{rcl}
 
\displaystyle{f_{\text{avg}}} & = & \displaystyle{\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx}\\
 
&&\\
 
& = & \displaystyle{\int_0^2 x^3(1+x^2)^4~dx.}\\
 
\end{array}</math>
 
 
|}
 
|}
  
Line 30: Line 33:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we use <math>u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^2.</math> Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx.</math> Also, <math style="vertical-align: 0px">x^2=u-1.</math>
+
|First, we distribute to get
 
|-
 
|-
|We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_{\text{avg}}=\frac{1}{5} \int_0^5 25t-5t^2+18~dt.</math>
 
|-
 
|-
|So, the integral becomes
+
|Then, we integrate to get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_{\text{avg}}=\left. \frac{1}{5}\bigg[\frac{25t^2}{2}-\frac{5t^3}{3}+18t\bigg]\right|_0^5.</math>
::<math>\begin{array}{rcl}
 
\displaystyle{f_{\text{avg}}} & = & \displaystyle{\int_0^2 x\cdot x^2 (1+x^2)^4~dx}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}\int_1^5(u-1)u^4~du}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}\int_1^5(u^5-u^4)~du.}\\
 
\end{array}</math>
 
 
|}
 
|}
  
Line 49: Line 45:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|We integrate to get
+
|We now evaluate to get  
 
|-
 
|-
|  
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
::<math>\begin{array}{rcl}
+
\displaystyle{s_{\text{avg}}} & = & \displaystyle{\frac{1}{5}\bigg[\frac{25(5)^2}{2}-\frac{5(5)^3}{3}+18(5)\bigg]-0}\\
\displaystyle{f_{\text{avg}}} & = & \displaystyle{\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5}\\
+
&&\\
 +
& = & \displaystyle{\frac{233}{6}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5.}\\
+
& \approx & \displaystyle{$38.83.}
 +
 
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|We evaluate to get
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{f_{\text{avg}}} & = & \displaystyle{5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)}\\
 
&&\\
 
& = & \displaystyle{3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}}\\
 
&&\\
 
& = & \displaystyle{\frac{59376}{60}}\\
 
&&\\
 
& = & \displaystyle{\frac{4948}{5}.}\\
 
\end{array}</math>
 
|}
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; <math>\frac{4948}{5}</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{233}{6}\approx $38.83</math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:59, 9 April 2017

Otis Taylor plots the price per share of a stock that he owns as a function of time

and finds that it can be approximated by the function

where    is the time (in years) since the stock was purchased.

Find the average price of the stock over the first five years.


Foundations:  
The average value of a function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   on an interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]}   is given by
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx.}


Solution:

Step 1:  
This problem wants us to find the average value of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(t)}   over the interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,5].}
Using the average value formula, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{\text{avg}}=\frac{1}{5-0} \int_0^5 t(25-5t)+18~dt.}
Step 2:  
First, we distribute to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{\text{avg}}=\frac{1}{5} \int_0^5 25t-5t^2+18~dt.}
Then, we integrate to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{\text{avg}}=\left. \frac{1}{5}\bigg[\frac{25t^2}{2}-\frac{5t^3}{3}+18t\bigg]\right|_0^5.}
Step 3:  
We now evaluate to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{s_{\text{avg}}} & = & \displaystyle{\frac{1}{5}\bigg[\frac{25(5)^2}{2}-\frac{5(5)^3}{3}+18(5)\bigg]-0}\\ &&\\ & = & \displaystyle{\frac{233}{6}}\\ &&\\ & \approx & \displaystyle{$38.83.} \end{array}}


Final Answer:  
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{233}{6}\approx $38.83}

Return to Sample Exam