Difference between revisions of "009C Sample Final 1, Problem 8"

From Math Wiki
Jump to navigation Jump to search
 
Line 33: Line 33:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|Since the graph has symmetry (as seen in the graph), the area of the curve is
+
|Since the graph has symmetry (as seen in the previous image), the area of the curve is
 
|-
 
|-
 
|
 
|
::<math>2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta)^2)~d\theta.</math>
+
::<math>2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta))^2~d\theta.</math>
 
|}
 
|}
  

Latest revision as of 09:18, 24 May 2016

A curve is given in polar coordinates by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1+\sin 2\theta}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq \theta \leq 2\pi}
a) Sketch the curve.
b) Find the area enclosed by the curve.


Foundations:  
The area under a polar curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=f(\theta)} is given by
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta} for appropriate values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_1,\alpha_2.}

Solution:

(a)

Step 1:  
009C SF1 8.jpg


(b)

Step 1:  
Since the graph has symmetry (as seen in the previous image), the area of the curve is
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 2\int _{-{\frac {\pi }{4}}}^{\frac {3\pi }{4}}{\frac {1}{2}}(1+\sin(2\theta ))^{2}~d\theta .}
Step 2:  
Using the double angle formula for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(2\theta),} we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta))^2~d\theta} & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\sin^2(2\theta)~d\theta} \\ &&\\ & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\frac{1-\cos(4\theta)}{2}~d\theta}\\ &&\\ & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{3}{2}+2\sin(2\theta)-\frac{\cos(4\theta)}{2}~d\theta}\\ &&\\ & = & \displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}.}\\ \end{array}}
Step 3:  
Lastly, we evaluate to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}} & = &\displaystyle{\frac{3}{2}\bigg(\frac{3\pi}{4}\bigg)-\cos\bigg(\frac{3\pi}{2}\bigg)-\frac{\sin(3\pi)}{8}-\bigg[\frac{3}{2}\bigg(-\frac{\pi}{4}\bigg)-\cos\bigg(-\frac{\pi}{2}\bigg)-\frac{\sin(-\pi)}{8}\bigg]}\\ &&\\ & = & \displaystyle{\frac{9\pi}{8}+\frac{3\pi}{8}}\\ &&\\ & = & \displaystyle{\frac{3\pi}{2}.}\\ \end{array}}
Final Answer:  
   (a) See Step 1 above.
   (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3\pi}{2}}

Return to Sample Exam