Difference between revisions of "009B Sample Midterm 3, Problem 1"
Jump to navigation
Jump to search
(Created page with "<span class="exam">Divide the interval <math style="vertical-align: -5px">[0,\pi]</math> into four subintervals of equal length <math>\frac{\pi}{4}</math> and compute the righ...") |
|||
Line 1: | Line 1: | ||
+ | [[File:9B_SM3_1_GP.png|right|375px]] | ||
+ | |||
<span class="exam">Divide the interval <math style="vertical-align: -5px">[0,\pi]</math> into four subintervals of equal length <math>\frac{\pi}{4}</math> and compute the right-endpoint Riemann sum of <math style="vertical-align: -5px">y=\sin (x).</math> | <span class="exam">Divide the interval <math style="vertical-align: -5px">[0,\pi]</math> into four subintervals of equal length <math>\frac{\pi}{4}</math> and compute the right-endpoint Riemann sum of <math style="vertical-align: -5px">y=\sin (x).</math> | ||
Revision as of 14:27, 12 May 2016
Divide the interval into four subintervals of equal length and compute the right-endpoint Riemann sum of
Foundations: |
---|
Recall: |
|
|
Solution:
Step 1: |
---|
Let Each interval has length |
So, the right-endpoint Riemann sum of on the interval is |
|
Step 2: |
---|
Thus, the right-endpoint Riemann sum is |
|
Final Answer: |
---|