Difference between revisions of "009A Sample Final 1, Problem 9"
Jump to navigation
Jump to search
| Line 137: | Line 137: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' <math style="vertical-align: -5px">f(x)</math>  is increasing on <math style="vertical-align: -5px">(-\infty,0),(4,\infty),</math> and decreasing on <math style="vertical-align: -5px">(0,4).</math> | + | | '''(a)''' <math style="vertical-align: -5px">f(x)</math>  is increasing on <math style="vertical-align: -5px">(-\infty,0),(4,\infty),</math> and decreasing on <math style="vertical-align: -5px">(0,4).</math> |
|- | |- | ||
| − | |'''(b)''' The local maximum value is <math style="vertical-align: -5px">f(0)=5,</math>  and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math> | + | | '''(b)''' The local maximum value is <math style="vertical-align: -5px">f(0)=5,</math>  and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math> |
|- | |- | ||
| − | |'''(c)''' <math style="vertical-align: -5px">f(x)</math>  is concave up on the interval <math style="vertical-align: -5px">(2,\infty),</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math> | + | | '''(c)''' <math style="vertical-align: -5px">f(x)</math>  is concave up on the interval <math style="vertical-align: -5px">(2,\infty),</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math> |
|- | |- | ||
| − | |'''(d)''' <math style="vertical-align: -5px">(2,-11)</math> | + | | '''(d)''' <math style="vertical-align: -5px">(2,-11)</math> |
|- | |- | ||
| − | |'''(e)''' See graph in '''(e)'''. | + | | '''(e)''' See graph in '''(e)'''. |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 14:16, 18 April 2016
Given the function ,
- a) Find the intervals in which the function increases or decreases.
- b) Find the local maximum and local minimum values.
- c) Find the intervals in which the function concaves upward or concaves downward.
- d) Find the inflection point(s).
- e) Use the above information (a) to (d) to sketch the graph of .
| Foundations: |
|---|
| Recall: |
|
|
|
|
Solution:
(a)
| Step 1: |
|---|
| We start by taking the derivative of We have |
|
|
| Now, we set So, we have |
|
|
| Hence, we have and |
| So, these values of break up the number line into 3 intervals: |
| Step 2: |
|---|
| To check whether the function is increasing or decreasing in these intervals, we use testpoints. |
|
|
|
| Thus, is increasing on and decreasing on |
(b)
| Step 1: |
|---|
| By the First Derivative Test, the local maximum occurs at and the local minimum occurs at |
| Step 2: |
|---|
| So, the local maximum value is and the local minimum value is |
(c)
| Step 1: |
|---|
| To find the intervals when the function is concave up or concave down, we need to find |
| We have |
|
|
| We set |
| So, we have |
|
|
| Hence, This value breaks up the number line into two intervals: |
| Step 2: |
|---|
| Again, we use test points in these two intervals. |
|
|
| Thus, is concave up on the interval and concave down on the interval |
| (d) |
|---|
| Using the information from part (c), there is one inflection point that occurs at |
| Now, we have |
| So, the inflection point is |
| (e) |
|---|
| Final Answer: |
|---|
| (a) is increasing on and decreasing on |
| (b) The local maximum value is and the local minimum value is |
| (c) is concave up on the interval and concave down on the interval |
| (d) |
| (e) See graph in (e). |