Difference between revisions of "009B Sample Final 1, Problem 2"

From Math Wiki
Jump to navigation Jump to search
Line 110: Line 110:
 
!Final Answer:    
 
!Final Answer:    
 
|-
 
|-
|'''(a)''' &nbsp;<math>f(x)=-\cos(x^2)+\cos(1)</math>
+
|&nbsp;&nbsp; '''(a)''' &nbsp;<math>f(x)=-\cos(x^2)+\cos(1)</math>
 
|-
 
|-
|'''(b)''' &nbsp;<math>f'(x)=\sin(x^2)2x</math>
+
|&nbsp;&nbsp; '''(b)''' &nbsp;<math>f'(x)=\sin(x^2)2x</math>
 
|-
 
|-
|'''(c)''' &nbsp;'''<u>The Fundamental Theorem of Calculus, Part 1</u>'''
+
|&nbsp;&nbsp; '''(c)''' &nbsp;'''<u>The Fundamental Theorem of Calculus, Part 1</u>'''
 
|-
 
|-
 
|&nbsp;&nbsp;Let <math>f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>.
 
|&nbsp;&nbsp;Let <math>f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>.
Line 120: Line 120:
 
|&nbsp;&nbsp;Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x)</math>.   
 
|&nbsp;&nbsp;Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x)</math>.   
 
|-
 
|-
|'''<u>The Fundamental Theorem of Calculus, Part 2</u>'''
+
|&nbsp;&nbsp; '''<u>The Fundamental Theorem of Calculus, Part 2</u>'''
 
|-
 
|-
 
|&nbsp;&nbsp;Let <math>f</math> be continuous on <math>[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math>f</math>.
 
|&nbsp;&nbsp;Let <math>f</math> be continuous on <math>[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math>f</math>.
Line 126: Line 126:
 
|&nbsp;&nbsp;Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>.
 
|&nbsp;&nbsp;Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>.
 
|-
 
|-
|'''(d)''' &nbsp;<math style="vertical-align: -5px">\sin(x^2)2x</math>
+
|&nbsp;&nbsp; '''(d)''' &nbsp;<math style="vertical-align: -5px">\sin(x^2)2x</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:10, 18 April 2016

We would like to evaluate

a) Compute
b) Find
c) State the Fundamental Theorem of Calculus.
d) Use the Fundamental Theorem of Calculus to compute   without first computing the integral.
d) Use the Fundamental Theorem of Calculus to compute   without first computing the integral.
Foundations:  
How would you integrate
You could use -substitution. Let Then,
So, we get

Solution:

(a)

Step 1:  
We proceed using -substitution. Let Then,
Since this is a definite integral, we need to change the bounds of integration.
Plugging our values into the equation we get and
Step 2:  
So, we have


(b)

Step 1:  
From part (a), we have
Step 2:  
If we take the derivative, we get since is just a constant.

(c)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let
Then, is a differentiable function on and
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of
Then,
(d)  
By the Fundamental Theorem of Calculus, Part 1,
Final Answer:  
   (a)  
   (b)  
   (c)  The Fundamental Theorem of Calculus, Part 1
  Let be continuous on and let .
  Then, is a differentiable function on and .
   The Fundamental Theorem of Calculus, Part 2
  Let be continuous on and let be any antiderivative of .
  Then, .
   (d)  

Return to Sample Exam