Difference between revisions of "009B Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
Line 103: | Line 103: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' |
|- | |- | ||
− | |'''The Fundamental Theorem of Calculus, Part 1''' | + | | '''The Fundamental Theorem of Calculus, Part 1''' |
|- | |- | ||
− | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> | + | | Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b),</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> | + | | Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b),</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> |
|- | |- | ||
− | |'''The Fundamental Theorem of Calculus, Part 2''' | + | | '''The Fundamental Theorem of Calculus, Part 2''' |
|- | |- | ||
− | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> | + | | Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | + | | Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> |
|- | |- | ||
− | |'''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math> | + | | '''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math> |
|- | |- | ||
− | |'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math> | + | | '''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 14:05, 18 April 2016
This problem has three parts:
- a) State the Fundamental Theorem of Calculus.
- b) Compute .
- c) Evaluate .
Foundations: |
---|
1. What does Part 1 of the Fundamental Theorem of Calculus say about |
|
2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants? |
|
Solution:
(a)
Step 1: |
---|
The Fundamental Theorem of Calculus has two parts. |
The Fundamental Theorem of Calculus, Part 1 |
|
|
Step 2: |
---|
The Fundamental Theorem of Calculus, Part 2 |
|
|
(b)
Step 1: |
---|
Let The problem is asking us to find |
Let and |
Then, |
Step 2: |
---|
If we take the derivative of both sides of the last equation, we get by the Chain Rule. |
Step 3: |
---|
Now, and by the Fundamental Theorem of Calculus, Part 1. |
Since we have |
|
(c)
Step 1: |
---|
Using the Fundamental Theorem of Calculus, Part 2, we have |
|
Step 2: |
---|
So, we get |
|
Final Answer: |
---|
(a) |
The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let |
Then, is a differentiable function on and |
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of |
Then, |
(b) |
(c) |