Difference between revisions of "009B Sample Midterm 2, Problem 4"

From Math Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|Integration by parts tells us <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math>
+
|'''1.''' Integration by parts tells us <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math>
 
|-
 
|-
|How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math>
+
|'''2.''' How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math>
 
|-
 
|-
 
|
 
|
Line 34: Line 34:
 
|-
 
|-
 
|
 
|
::Notice, we are back where we started. So, adding the last term on the right hand side to the opposite side,
+
::Notice, we are back where we started.  
 
|-
 
|-
 
|
 
|
::we get <math style="vertical-align: -13px">2\int e^x\sin (x)~dx\,=\,e^x(\sin(x)-\cos(x)).</math>
+
::So, adding the last term on the right hand side to the opposite side, we get
 +
|-
 +
|
 +
::<math style="vertical-align: -13px">2\int e^x\sin (x)~dx\,=\,e^x(\sin(x)-\cos(x)).</math>
 
|-
 
|-
 
|
 
|
Line 47: Line 50:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We proceed using integration by parts. Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx</math>. Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}</math>.
+
|We proceed using integration by parts. Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
 
|-
 
|-
 
|So, we get  
 
|So, we get  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -14px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}=\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx</math>.
+
|  
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int e^{-2x}\sin (2x)~dx} & = & \displaystyle{\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 57: Line 65:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to use integration by parts again. Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx</math>. Then, <math style="vertical-align: -5px">du=-2\sin(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}</math>.
+
|Now, we need to use integration by parts again. Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> Then, <math style="vertical-align: -5px">du=-2\sin(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
 
|-
 
|-
 
|So, we get  
 
|So, we get  
|-
 
| &nbsp;&nbsp; <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx</math>.
 
 
|-
 
|-
 
|
 
|
 +
::<math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx</math>.
 
|}
 
|}
  
Line 73: Line 80:
 
|So, if we add the integral on the right to the other side of the equation, we get
 
|So, if we add the integral on the right to the other side of the equation, we get
 
|-
 
|-
| &nbsp;&nbsp; <math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}</math>&thinsp;.
+
|
 +
::<math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}.</math>
 
|-
 
|-
 
|Now, we divide both sides by 2 to get  
 
|Now, we divide both sides by 2 to get  
 
|-
 
|-
| &nbsp;&nbsp; <math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}</math>&thinsp;.
+
|
 +
::<math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}.</math>
 
|-
 
|-
|Thus, the final answer is <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C</math>.
+
|Thus, the final answer is  
 +
|-
 +
|
 +
::<math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C.</math>
 
|}
 
|}
  

Revision as of 13:57, 18 April 2016

Evaluate the integral:


Foundations:  
1. Integration by parts tells us Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int u~dv=uv-\int v~du.}
2. How would you integrate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x\sin x~dx?}
You could use integration by parts.
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sin(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^x~dx.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\cos(x)~dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=e^x.}
Thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x\sin x~dx\,=\,e^x\sin(x)-\int e^x\cos(x)~dx.}
Now, we need to use integration by parts a second time.
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^x~dx.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-\sin(x)~dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=e^x.} So,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\ &&\\ & = & \displaystyle{e^x(\sin(x)-\cos(x))-\int e^x\sin(x)~dx.}\\ \end{array}}
Notice, we are back where we started.
So, adding the last term on the right hand side to the opposite side, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\int e^x\sin (x)~dx\,=\,e^x(\sin(x)-\cos(x)).}
Hence,

Solution:

Step 1:  
We proceed using integration by parts. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sin(2x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{-2x}dx.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=2\cos(2x)dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\frac{e^{-2x}}{-2}.}
So, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int e^{-2x}\sin (2x)~dx} & = & \displaystyle{\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}}\\ &&\\ & = & \displaystyle{\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx.}\\ \end{array}}
Step 2:  
Now, we need to use integration by parts again. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos(2x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{-2x}dx.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-2\sin(2x)dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\frac{e^{-2x}}{-2}.}
So, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx} .
Step 3:  
Notice that the integral on the right of the last equation in Step 2 is the same integral that we had at the beginning of the problem.
So, if we add the integral on the right to the other side of the equation, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}.}
Now, we divide both sides by 2 to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}.}
Thus, the final answer is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C.}
Final Answer:  
   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C}

Return to Sample Exam