Difference between revisions of "009B Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
<span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math>  and the <math>x</math>-axis. | <span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math>  and the <math>x</math>-axis. | ||
− | ::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>. | + | ::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and |
+ | |||
+ | :::<span class="exam">indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>. | ||
::<span class="exam">b) Find an expression for the area of the region <math style="vertical-align: 0px">S</math> as a limit. Do not evaluate the limit. | ::<span class="exam">b) Find an expression for the area of the region <math style="vertical-align: 0px">S</math> as a limit. Do not evaluate the limit. | ||
Line 12: | Line 14: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''1.''' The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval. | + | | |
+ | ::'''1.''' The height of each rectangle in the left-hand Riemann sum is given by | ||
+ | |- | ||
+ | | | ||
+ | :::choosing the left endpoint of the interval. | ||
+ | |- | ||
+ | | | ||
+ | ::'''2.''' The height of each rectangle in the right-hand Riemann sum is given by | ||
|- | |- | ||
− | | | + | | |
+ | :::choosing the right endpoint of the interval. | ||
|- | |- | ||
− | |'''3.''' See the page on [[Riemann_Sums|'''Riemann Sums''']] for more information. | + | | |
+ | ::'''3.''' See the page on [[Riemann_Sums|'''Riemann Sums''']] for more information. | ||
|} | |} | ||
Line 25: | Line 36: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}</math> | + | |Let <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}.</math> Since our interval is <math style="vertical-align: -5px">[1,5]</math> and we are using <math style="vertical-align: -1px">4</math> rectangles, each rectangle has width <math style="vertical-align: -1px">1.</math> Since the problem doesn't specify, we can choose either right- or left-endpoints. Choosing left-endpoints, the Riemann sum is |
− | |||
− | |||
|- | |- | ||
| | | | ||
+ | ::<math>1\cdot (f(1)+f(2)+f(3)+f(4)).</math> | ||
|} | |} | ||
Line 37: | Line 47: | ||
|Thus, the left-endpoint Riemann sum is | |Thus, the left-endpoint Riemann sum is | ||
|- | |- | ||
− | | | + | | |
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{1\cdot (f(1)+f(2)+f(3)+f(4))} & = & \displaystyle{\bigg(1+\frac{1}{4}+\frac{1}{9}+{1}{16}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{205}{144}.}\\ | ||
+ | \end{array}</math> | ||
|- | |- | ||
− | |The left-endpoint Riemann sum overestimates the area of <math style="vertical-align: 0px">S</math> | + | |The left-endpoint Riemann sum overestimates the area of <math style="vertical-align: 0px">S.</math> |
|} | |} | ||
Line 46: | Line 61: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the left-endpoint Riemann sum for <math style="vertical-align: -13px">f(x)=\frac{1}{x^2} | + | |Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the left-endpoint Riemann sum for <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}.</math> |
− | |||
− | |||
|- | |- | ||
− | | | + | |The width of each rectangle is |
|- | |- | ||
| | | | ||
+ | ::<math style="vertical-align: -13px">\Delta x=\frac{5-1}{n}=\frac{4}{n}.</math> | ||
|} | |} | ||
Line 60: | Line 74: | ||
|So, the left-endpoint Riemann sum is | |So, the left-endpoint Riemann sum is | ||
|- | |- | ||
− | | | + | | |
+ | ::<math>\Delta x \bigg(f(1)+f\bigg(1+\frac{4}{n}\bigg)+f\bigg(1+2\frac{4}{n}\bigg)+\ldots +f\bigg(1+(n-1)\frac{4}{n}\bigg)\bigg).</math> | ||
|- | |- | ||
|Now, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit. | |Now, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit. | ||
|- | |- | ||
− | |So, the area of <math style="vertical-align: 0px">S</math> is equal to <math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}f\bigg(1+i\frac{4}{n}\bigg)\,=\,\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}</math> | + | |So, the area of <math style="vertical-align: 0px">S</math> is equal to |
+ | |- | ||
+ | | | ||
+ | ::<math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}f\bigg(1+i\frac{4}{n}\bigg)\,=\,\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}.</math> | ||
|} | |} | ||
Line 74: | Line 92: | ||
|'''(b)''' Using left-endpoint Riemann sums: | |'''(b)''' Using left-endpoint Riemann sums: | ||
|- | |- | ||
− | | | + | | |
+ | ::<math style="vertical-align: -20px">\lim_{n\to\infty} \frac{4}{n}\sum_{i=0}^{n-1}\bigg(1+i\frac{4}{n}\bigg)^{-2}</math> | ||
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 13:36, 18 April 2016
Consider the region bounded by and the -axis.
- a) Use four rectangles and a Riemann sum to approximate the area of the region . Sketch the region and the rectangles and
- indicate whether your rectangles overestimate or underestimate the area of .
- b) Find an expression for the area of the region as a limit. Do not evaluate the limit.
Foundations: |
---|
Recall: |
|
|
|
|
|
Solution:
(a)
Step 1: |
---|
Let Since our interval is and we are using rectangles, each rectangle has width Since the problem doesn't specify, we can choose either right- or left-endpoints. Choosing left-endpoints, the Riemann sum is |
|
Step 2: |
---|
Thus, the left-endpoint Riemann sum is |
|
The left-endpoint Riemann sum overestimates the area of |
(b)
Step 1: |
---|
Let be the number of rectangles used in the left-endpoint Riemann sum for |
The width of each rectangle is |
|
Step 2: |
---|
So, the left-endpoint Riemann sum is |
|
Now, we let go to infinity to get a limit. |
So, the area of is equal to |
|
Final Answer: |
---|
(a) The left-endpoint Riemann sum is , which overestimates the area of . |
(b) Using left-endpoint Riemann sums: |
|