Difference between revisions of "009B Sample Midterm 1, Problem 4"
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |Recall the trig identity: <math style="vertical-align: -2px">\sin^2x+\cos^2x=1.</math> | + | |'''1.''' Recall the trig identity: <math style="vertical-align: -2px">\sin^2x+\cos^2x=1.</math> |
|- | |- | ||
− | |How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math> | + | |'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math> |
|- | |- | ||
| | | | ||
− | ::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\sin x.</math> Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> | + | ::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\sin x.</math> Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> Thus, |
|- | |- | ||
| | | | ||
− | :: | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\int \sin^2x\cos x~dx} & = & \displaystyle{\int u^2~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{u^3}{3}+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\sin^3x}{3}+C.} \\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 22: | Line 28: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we write | + | |First, we write |
|- | |- | ||
− | | | + | | |
+ | ::<math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math> | ||
|- | |- | ||
− | | | + | |Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1,</math> we get |
|- | |- | ||
| | | | ||
+ | ::<math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math> | ||
+ | |- | ||
+ | |If we use this identity, we have | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int (\sin x) (1-\cos^2x)\cos^2x~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int (\cos^2x-\cos^4x)\sin(x)~dx.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 34: | Line 51: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\cos(x)</math> | + | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> Therefore, |
|- | |- | ||
− | | | + | | |
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int -(u^2-u^4)~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-u^3}{3}+\frac{u^5}{5}+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Revision as of 13:15, 18 April 2016
Evaluate the integral:
Foundations: |
---|
1. Recall the trig identity: |
2. How would you integrate |
|
|
Solution:
Step 1: |
---|
First, we write |
|
Using the identity we get |
|
If we use this identity, we have |
|
Step 2: |
---|
Now, we use -substitution. Let Then, Therefore, |
|
Final Answer: |
---|