Difference between revisions of "009B Sample Midterm 1, Problem 3"
Jump to navigation
Jump to search
| Line 16: | Line 16: | ||
|- | |- | ||
| | | | ||
| − | ::Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -12px">v=\frac{x^2}{2}.</math> | + | ::Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -12px">v=\frac{x^2}{2}.</math> Thus, |
|- | |- | ||
| | | | ||
| − | :: | + | ::<math>\begin{array}{rcl} |
| + | \displaystyle{\int x\ln x~dx} & = & \displaystyle{\frac{x^2\ln x}{2}-\int \frac{x}{2}~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{x^2\ln x}{2}-\frac{x^2}{4}+C.}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
Revision as of 13:09, 18 April 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
| Foundations: |
|---|
| 1. Integration by parts tells us that |
| 2. How would you integrate |
|
|
|
|
Solution:
(a)
| Step 1: |
|---|
| We proceed using integration by parts. Let and Then, and |
| Therefore, we have |
|
|
| Step 2: |
|---|
| Now, we need to use integration by parts again. Let and Then, and |
| Building on the previous step, we have |
|
|
(b)
| Step 1: |
|---|
| We proceed using integration by parts. Let and Then, and |
| Therefore, we have |
|
|
| Step 2: |
|---|
| Now, we evaluate to get |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |