Difference between revisions of "009B Sample Final 1, Problem 6"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Evaluate the improper integrals: ::<span class="exam">a) <math>\int_0^{\infty} xe^{-x}~dx</math> ::<span class="exam">b) <math>\int_1^4 \frac{dx}{\sqrt{4-...")
 
Line 12: Line 12:
 
::You can write <math>\int_0^{\infty} f(x)~dx=\lim_{a\rightarrow\infty} \int_0^a f(x)~dx.</math>
 
::You can write <math>\int_0^{\infty} f(x)~dx=\lim_{a\rightarrow\infty} \int_0^a f(x)~dx.</math>
 
|-
 
|-
|'''2.''' How could you write <math>\int_{-1}^1 \frac{1}{x}~dx</math> ?
+
|'''2.''' How could you write <math>\int_{-1}^1 \frac{1}{x}~dx?</math>
 
|-
 
|-
 
|
 
|
::The problem is that&thinsp; <math>\frac{1}{x}</math> &thinsp;is not continuous at <math style="vertical-align: 0px">x=0</math>.
+
::The problem is that&thinsp; <math>\frac{1}{x}</math> &thinsp;is not continuous at <math style="vertical-align: 0px">x=0.</math>
 
|-
 
|-
 
|
 
|
::So, you can write <math style="vertical-align: -15px">\int_{-1}^1 \frac{1}{x}~dx=\lim_{a\rightarrow 0^-} \int_{-1}^a \frac{1}{x}~dx+\lim_{a\rightarrow 0^+} \int_a^1 \frac{1}{x}~dx</math>.
+
::So, you can write <math style="vertical-align: -15px">\int_{-1}^1 \frac{1}{x}~dx=\lim_{a\rightarrow 0^-} \int_{-1}^a \frac{1}{x}~dx+\lim_{a\rightarrow 0^+} \int_a^1 \frac{1}{x}~dx.</math>
 
|-
 
|-
|'''3.''' How would you integrate <math style="vertical-align: -13px">\int xe^x\,dx</math> ?
+
|'''3.''' How would you integrate <math style="vertical-align: -13px">\int xe^x\,dx?</math>
 
|-
 
|-
 
|
 
|
Line 26: Line 26:
 
|-
 
|-
 
|
 
|
::Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^xdx</math>.
+
::Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^xdx.</math>
 
|}
 
|}
  
Line 36: Line 36:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we write <math style="vertical-align: -14px">\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \int_0^a xe^{-x}~dx</math>.
+
|First, we write  
 
|-
 
|-
|Now, we proceed using integration by parts. Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^{-x}dx</math>. Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: 0px">v=-e^{-x}</math>.
+
|
 +
::<math style="vertical-align: -14px">\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \int_0^a xe^{-x}~dx.</math>
 +
|-
 +
|Now, we proceed using integration by parts. Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^{-x}dx.</math> Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: 0px">v=-e^{-x}.</math>
 
|-
 
|-
 
|Thus, the integral becomes
 
|Thus, the integral becomes
Line 49: Line 52:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: 0px">u=-x</math>. Then, <math style="vertical-align: 0px">du=-dx</math>.
+
|For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: 0px">u=-x.</math> Then, <math style="vertical-align: 0px">du=-dx.</math>  
 
|-
 
|-
 
|Since the integral is a definite integral, we need to change the bounds of integration.
 
|Since the integral is a definite integral, we need to change the bounds of integration.
 
|-
 
|-
|Plugging in our values into the equation <math style="vertical-align: 0px">u=-x</math>, we get <math style="vertical-align: -5px">u_1=0</math> and <math style="vertical-align: -3px">u_2=-a</math>.
+
|Plugging in our values into the equation <math style="vertical-align: -4px">u=-x,</math> we get <math style="vertical-align: -5px">u_1=0</math> and <math style="vertical-align: -3px">u_2=-a.</math>
 
|-
 
|-
 
|Thus, the integral becomes
 
|Thus, the integral becomes
Line 100: Line 103:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we write <math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_1^a\frac{dx}{\sqrt{4-x}}</math>.
+
|First, we write  
 +
|-
 +
|
 +
::<math>\int_1^4 \frac{dx}{\sqrt{4-x}}=\lim_{a\rightarrow 4} \int_1^a\frac{dx}{\sqrt{4-x}}.</math>
 
|-
 
|-
|Now, we proceed by <math style="vertical-align: 0px">u</math>-substitution. We let <math style="vertical-align: -1px">u=4-x</math>. Then, <math style="vertical-align: 0px">du=-dx</math>.
+
|Now, we proceed by <math style="vertical-align: 0px">u</math>-substitution. We let <math style="vertical-align: -1px">u=4-x.</math> Then, <math style="vertical-align: 0px">du=-dx.</math>
 
|-
 
|-
 
|Since the integral is a definite integral, we need to change the bounds of integration.  
 
|Since the integral is a definite integral, we need to change the bounds of integration.  
 
|-
 
|-
|Plugging in our values into the equation <math style="vertical-align: -1px">u=4-x</math>, we get <math style="vertical-align: -5px">u_1=4-1=3</math>&thinsp; and <math style="vertical-align: -3px">u_2=4-a</math>.
+
|Plugging in our values into the equation <math style="vertical-align: -4px">u=4-x,</math> we get <math style="vertical-align: -5px">u_1=4-1=3</math>&thinsp; and <math style="vertical-align: -3px">u_2=4-a.</math>
 
|-
 
|-
 
|Thus, the integral becomes
 
|Thus, the integral becomes

Revision as of 12:12, 18 April 2016

Evaluate the improper integrals:

a)
b)
Foundations:  
1. How could you write so that you can integrate?
You can write
2. How could you write
The problem is that   is not continuous at
So, you can write
3. How would you integrate
You can use integration by parts.
Let and

Solution:

(a)

Step 1:  
First, we write
Now, we proceed using integration by parts. Let and Then, and
Thus, the integral becomes
Step 2:  
For the remaining integral, we need to use -substitution. Let Then,
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation we get and
Thus, the integral becomes
Step 3:  
Now, we evaluate to get
Using L'Hôpital's Rule, we get

(b)

Step 1:  
First, we write
Now, we proceed by -substitution. We let Then,
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation we get   and
Thus, the integral becomes
Step 2:  
We integrate to get
Final Answer:  
(a)  
(b)  

Return to Sample Exam