Difference between revisions of "009A Sample Final 1, Problem 10"
Jump to navigation
Jump to search
(Created page with "<span class="exam">Consider the following continuous function: ::::::<math>f(x)=x^{1/3}(x-8)</math> <span class="exam">defined on the closed, bounded interval <math style="ve...") |
|||
Line 4: | Line 4: | ||
<span class="exam">defined on the closed, bounded interval <math style="vertical-align: -5px">[-8,8]</math>. | <span class="exam">defined on the closed, bounded interval <math style="vertical-align: -5px">[-8,8]</math>. | ||
− | <span class="exam">a) Find all the critical points for <math style="vertical-align: -5px">f(x)</math>. | + | ::<span class="exam">a) Find all the critical points for <math style="vertical-align: -5px">f(x)</math>. |
− | <span class="exam">b) Determine the absolute maximum and absolute minimum values for <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[-8,8]</math>. | + | ::<span class="exam">b) Determine the absolute maximum and absolute minimum values for <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[-8,8]</math>. |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 13: | Line 13: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x),</math> we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x.</math> | + | | |
+ | ::'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x),</math> we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x.</math> | ||
|- | |- | ||
| | | | ||
::Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined. | ::Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined. | ||
|- | |- | ||
− | |'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b],</math> | + | | |
+ | ::'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b],</math> | ||
|- | |- | ||
| | | | ||
Line 55: | Line 57: | ||
::<math>-x^{\frac{1}{3}}\,=\,\frac{x-8}{3x^{\frac{2}{3}}}.</math> | ::<math>-x^{\frac{1}{3}}\,=\,\frac{x-8}{3x^{\frac{2}{3}}}.</math> | ||
|- | |- | ||
− | |We cross multiply to get <math style="vertical-align: 1px">-3x=x-8.</math> | + | |We cross multiply to get |
+ | |- | ||
+ | | | ||
+ | ::<math style="vertical-align: 1px">-3x=x-8.</math> | ||
|- | |- | ||
|Solving, we get <math style="vertical-align: -1px">x=2.</math> | |Solving, we get <math style="vertical-align: -1px">x=2.</math> |
Revision as of 11:28, 18 April 2016
Consider the following continuous function:
defined on the closed, bounded interval .
- a) Find all the critical points for .
- b) Determine the absolute maximum and absolute minimum values for on the interval .
Foundations: |
---|
Recall: |
|
|
|
|
Solution:
(a)
Step 1: |
---|
To find the critical points, first we need to find |
Using the Product Rule, we have |
|
Step 2: |
---|
Notice is undefined when |
Now, we need to set |
So, we get |
|
We cross multiply to get |
|
Solving, we get |
Thus, the critical points for are and |
(b)
Step 1: |
---|
We need to compare the values of at the critical points and at the endpoints of the interval. |
Using the equation given, we have and |
Step 2: |
---|
Comparing the values in Step 1 with the critical points in (a), the absolute maximum value for is |
and the absolute minimum value for is |
Final Answer: |
---|
(a) and |
(b) The absolute minimum value for is |