Difference between revisions of "009A Sample Final 1, Problem 3"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Find the derivatives of the following functions. <span class="exam">a) <math style="vertical-align: -16px">f(x)=\ln \bigg(\frac{x^2-1}{x^2+1}\bigg)</math>...")
 
Line 12: Line 12:
 
|&nbsp;
 
|&nbsp;
 
|-
 
|-
|'''Chain Rule:'''&nbsp; <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
+
|
 +
::'''Chain Rule:'''&nbsp; <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
 
|-
 
|-
 
|&nbsp;
 
|&nbsp;
 
|-
 
|-
|'''Quotient Rule:'''&nbsp; <math>\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}</math>
+
|
 +
::'''Quotient Rule:'''&nbsp; <math>\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}</math>
 
|-
 
|-
 
|&nbsp;
 
|&nbsp;
 
|-
 
|-
|'''Trig Derivatives:'''&nbsp; <math>\frac{d}{dx}(\sin x)=\cos x,\quad\frac{d}{dx}(\tan x)=\sec^2 x</math>
+
|
 +
::'''Trig Derivatives:'''&nbsp; <math>\frac{d}{dx}(\sin x)=\cos x,\quad\frac{d}{dx}(\tan x)=\sec^2 x</math>
 
|-
 
|-
 
|&nbsp;
 
|&nbsp;

Revision as of 11:03, 18 April 2016

Find the derivatives of the following functions.

a)

b)

Foundations:  
For functions   and , recall
 
Chain Rule: 
 
Quotient Rule: 
 
Trig Derivatives: 
 

Solution:

(a)

Step 1:  
Using the Chain Rule, we have

Step 2:  
Now, we need to calculate  
To do this, we use the Quotient Rule. So, we have

(b)

Step 1:  
Again, we need to use the Chain Rule. We have
Step 2:  
We need to calculate 
We use the Chain Rule again to get
Final Answer:  
(a)
(b)

Return to Sample Exam