|
|
Line 1: |
Line 1: |
| <span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity. | | <span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity. |
| | | |
− | <span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math> | + | ::<span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math> |
| | | |
− | <span class="exam">b) <math style="vertical-align: -14px">\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math> | + | ::<span class="exam">b) <math style="vertical-align: -14px">\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math> |
| | | |
− | <span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math> | + | ::<span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math> |
| | | |
| {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 10:57, 18 April 2016
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
- a)
- b)
- c)
Foundations:
|
Recall:
|
L'Hôpital's Rule
|
Suppose that and are both zero or both
|
- If is finite or
|
- then
|
Solution:
(a)
Step 1:
|
We begin by factoring the numerator. We have
|
|
So, we can cancel in the numerator and denominator. Thus, we have
|
|
Step 2:
|
Now, we can just plug in to get
|
|
(b)
Step 1:
|
We proceed using L'Hôpital's Rule. So, we have
|
|
Step 2:
|
This limit is
|
(c)
Step 1:
|
We have
|
|
Since we are looking at the limit as goes to negative infinity, we have
|
So, we have
|
|
Step 2:
|
We simplify to get
|
|
So, we have
|
|
Final Answer:
|
(a)
|
(b)
|
(c)
|
Return to Sample Exam