Difference between revisions of "009B Sample Midterm 2, Problem 4"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Evaluate the integral: ::<math>\int e^{-2x}\sin (2x)~dx</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations: |...") |
|||
| Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |Integration by parts tells us <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math> |
| + | |- | ||
| + | |How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math> | ||
| + | |- | ||
| + | | | ||
| + | ::You could use integration by parts. | ||
| + | |- | ||
| + | | | ||
| + | ::Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> | ||
| + | |- | ||
| + | | | ||
| + | ::Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx\,=\,e^x\sin(x)-\int e^x\cos(x)~dx.</math> | ||
| + | |- | ||
| + | | | ||
| + | ::Now, we need to use integration by parts a second time. | ||
| + | |- | ||
| + | | | ||
| + | ::Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> So, | ||
| + | |- | ||
| + | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | \displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{e^x(\sin(x)-\cos(x))-\int e^x\sin(x)~dx.}\\ | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | | | ||
| + | ::Notice, we are back where we started. So, adding the last term on the right hand side to the opposite side, | ||
| + | |- | ||
| + | | | ||
| + | ::we get <math style="vertical-align: -13px">2\int e^x\sin (x)~dx\,=\,e^x(\sin(x)-\cos(x)).</math> | ||
| + | |- | ||
| + | | | ||
| + | ::Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx\,=\,\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math> | ||
|} | |} | ||
Revision as of 14:18, 8 April 2016
Evaluate the integral:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^{-2x}\sin (2x)~dx}
| Foundations: |
|---|
| Integration by parts tells us Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int u~dv=uv-\int v~du.} |
| How would you integrate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^x\sin x~dx?} |
|
|
|
|
|
|
|
|
|
Solution:
| Step 1: |
|---|
| We proceed using integration by parts. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sin(2x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{-2x}dx} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=2\cos(2x)dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\frac{e^{-2x}}{-2}} . |
| So, we get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}=\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx} . |
| Step 2: |
|---|
| Now, we need to use integration by parts again. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos(2x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{-2x}dx} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-2\sin(2x)dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\frac{e^{-2x}}{-2}} . |
| So, we get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx} . |
| Step 3: |
|---|
| Notice that the integral on the right of the last equation in Step 2 is the same integral that we had at the beginning of the problem. |
| So, if we add the integral on the right to the other side of the equation, we get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}} . |
| Now, we divide both sides by 2 to get |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}} . |
| Thus, the final answer is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C} . |
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C} |