Difference between revisions of "009B Sample Midterm 2"

From Math Wiki
Jump to navigation Jump to search
(Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar. Click on the''' '''<span cl...")
 
Line 5: Line 5:
  
 
== [[009B_Sample Midterm 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
== [[009B_Sample Midterm 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
<span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math> and the <math>x</math>-axis.
+
<span class="exam"> Consider the region <math style="vertical-align: 0px">S</math> bounded by <math style="vertical-align: -13px">x=1,x=5,y=\frac{1}{x^2}</math>&thinsp; and the <math>x</math>-axis.
  
 
::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>.
 
::<span class="exam">a) Use four rectangles and a Riemann sum to approximate the area of the region <math style="vertical-align: 0px">S</math>. Sketch the region <math style="vertical-align: 0px">S</math> and the rectangles and indicate whether your rectangles overestimate or underestimate the area of <math style="vertical-align: 0px">S</math>.

Revision as of 08:16, 3 February 2016

This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar. Click on the

 boxed problem numbers  to go to a solution.

 Problem 1 

Consider the region bounded by   and the -axis.

a) Use four rectangles and a Riemann sum to approximate the area of the region . Sketch the region and the rectangles and indicate whether your rectangles overestimate or underestimate the area of .
b) Find an expression for the area of the region as a limit. Do not evaluate the limit.

 Problem 2 

This problem has three parts:

a) State the Fundamental Theorem of Calculus.
b) Compute   .
c) Evaluate .

 Problem 3 

Evaluate

a)
b)

 Problem 4 

Evaluate the integral:

 Problem 5 

Evaluate the integral: