Difference between revisions of "022 Sample Final A, Problem 1"

From Math Wiki
Jump to navigation Jump to search
Line 55: Line 55:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|Now we have to find the 4 second derivatives:
+
|Now we have to find the 4 second derivatives,  We have
|-
+
<br>
|
+
::<math>\begin{array}{rcl}
<math>\begin{array}{rcl}
+
\displaystyle{\frac{\partial^2f(x,y)}{\partial x^2}\,=\,\frac{\partial}{\partial x} \left(\frac{\partial f(x, y)}{\partial x}\right)} & = & \displaystyle{\frac{\partial}{\partial x}\left(\frac{-2y^2}{(x - y)^2}\right)}\\
\displaystyle{\frac{\partial}{\partial x} \frac{\partial f(x, y)}{\partial x}} & = & \displaystyle{\frac{\partial}{\partial x}\left(\frac{-2y^2}{(x - y)^2}\right)}\\
 
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{0 - 2(x - y)(-2y^2)}{(x - y)^4}}\\
 
& = & \displaystyle{\frac{0 - 2(x - y)(-2y^2)}{(x - y)^4}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{4xy^2 - 4y^3}{(x - y)^4}}
+
& = & \displaystyle{\frac{4xy^2 - 4y^3}{(x - y)^4}.}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|
+
|Also,
<math>\begin{array}{rcl}
+
<br>
\displaystyle{\frac{\partial}{\partial y} \frac{\partial f(x, y)}{\partial x}} & = & \displaystyle{\frac{\partial}{\partial y}\left(\frac{-2y^2}{(x - y)^2}\right)}\\
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\frac{\partial^2f(x,y)}{\partial y\partial x}\,=\,\frac{\partial}{\partial y} \left(\frac{\partial f(x, y)}{\partial x}\right)} & = & \displaystyle{\frac{\partial}{\partial y}\left(\frac{-2y^2}{(x - y)^2}\right)}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{-4y(x - y)^2 -4y^2(x - y)}{(x - y)^4}}\\
 
& = & \displaystyle{\frac{-4y(x - y)^2 -4y^2(x - y)}{(x - y)^4}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{-4y(x^2 - 2xy + y^2) - 4xy^2 + 4y^3}{(x - y)^4}}\\
 
& = & \displaystyle{\frac{-4y(x^2 - 2xy + y^2) - 4xy^2 + 4y^3}{(x - y)^4}}\\
& = & \displaystyle{\frac{4xy^2 - 4x^2y}{(x - y)^4}}
+
& = & \displaystyle{\frac{4xy^2 - 4x^2y}{(x - y)^4}.}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|
+
|Showing the equality of mixed partial derivatives,
<math>\begin{array}{rcl}
+
<br>
\displaystyle{\frac{\partial}{\partial x} \frac{\partial f(x, y)}{\partial y}} & = & \displaystyle{\frac{\partial}{\partial x}\left(\frac{2x^2}{(x - y)^2}\right)}\\
+
::<math>\begin{array}{rcl}
 +
\displaystyle{\frac{\partial^2f(x,y)}{\partial x\partial y}\,=\,\frac{\partial}{\partial x} \left(\frac{\partial f(x, y)}{\partial y}\right)} & = & \displaystyle{\frac{\partial}{\partial x}\left(\frac{2x^2}{(x - y)^2}\right)}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{4x(x - y)^2 -2(x - y)2x^2}{(x - y)^4}}\\
 
& = & \displaystyle{\frac{4x(x - y)^2 -2(x - y)2x^2}{(x - y)^4}}\\
Line 84: Line 85:
 
& = & \displaystyle{\frac{4x(x^2 - 2xy + y^2) -4x^3+ 4x^2y}{(x - y)^4}}\\
 
& = & \displaystyle{\frac{4x(x^2 - 2xy + y^2) -4x^3+ 4x^2y}{(x - y)^4}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{4xy^2 -4x^2y}{(x - y)^4}}
+
& = & \displaystyle{\frac{4xy^2 -4x^2y}{(x - y)^4}.}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|
+
|Finally,
 
+
<br>
<math>\begin{array}{rcl}
+
::<math>\begin{array}{rcl}
\displaystyle{\frac{\partial}{\partial y} \frac{\partial f(x, y)}{\partial y}} & = & \displaystyle{\frac{\partial}{\partial y}\left(\frac{2x^2}{(x - y)^2}\right)}\\
+
\displaystyle{\frac{\partial^2f(x,y)}{\partial y^2}\,=\,\frac{\partial}{\partial y} \left(\frac{\partial f(x, y)}{\partial y}\right)} & = & \displaystyle{\frac{\partial}{\partial y}\left(\frac{2x^2}{(x - y)^2}\right)}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{0 + 2(x - y)(2x^2)}{(x - y)^4}}\\
 
& = & \displaystyle{\frac{0 + 2(x - y)(2x^2)}{(x - y)^4}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{4x^3 - 4x^2y}{(x - y)^4}}
+
& = & \displaystyle{\frac{4x^3 - 4x^2y}{(x - y)^4}.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 101: Line 102:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|<math>\displaystyle{\frac{\partial}{\partial x} f(x, y) = \frac{-2y^2}{(x - y)^2} \qquad
+
|The first partial derivatives are:
\frac{\partial}{\partial y} f(x, y) = \frac{2x^2}{(x - y)^2} \qquad}</math>
+
::<math>\displaystyle{\frac{\partial}{\partial x} f(x, y) = \frac{-2y^2}{(x - y)^2}, \qquad
 +
\frac{\partial}{\partial y} f(x, y) = \frac{2x^2}{(x - y)^2}.}</math>
 
|-
 
|-
|
+
|The second partial derivatives are:
<math>\displaystyle{\frac{\partial}{\partial x} \frac{\partial f(x, y)}{\partial x} = \frac{4xy^2 - 4y^3}{(x - y)^4} \qquad
+
::<math>\frac{\partial^{2}f(x,y)}{\partial x^{2}}\,=\,\frac{4xy^{2}-4y^{3}}{(x-y)^{4}},
\frac{\partial}{\partial y}\frac{\partial f(x, y)}{\partial x} = \frac{4xy^2 - 4x^2y}{(x - y)^4} \qquad
+
\qquad\frac{\partial^{2}f(x,y)}{\partial x\partial y}\,=\,\frac{\partial^{2}f(x,y)}{\partial y\partial x}\,=\,\frac{4xy^{2}-4x^{2}y}{(x-y)^{4}},\qquad\frac{\partial^{2}f(x,y)}{\partial y^{2}}\,=\,\frac{4x^{3}-4x^{2y}}{(x-y)^{4}}.</math>
\frac{\partial}{\partial x}\frac{\partial f(x, y)}{\partial y} = \frac{4xy^2 -4x^2y}{(x - y)^4} \qquad
 
\frac{\partial}{\partial y}\frac{\partial f(x, y)}{\partial y} = \frac{4x^3 - 4x^2y}{(x - y)^4}}
 
</math>
 
 
|}
 
|}
 
[[022_Sample_Final_A|'''<u>Return to Sample Exam</u>''']]
 
[[022_Sample_Final_A|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:59, 6 June 2015

Find all first and second partial derivatives of the following function, and demostrate that the mixed second partials are equal for the function


Foundations:  
1) Which derivative rules do you have to use for this problem?
2) What is the partial derivative of , with respect to ?
Answers:
1) You have to use the quotient rule and product rule. The quotient rule says that

so

The product rule says

This means

2) The partial derivative is , since we treat anything not involving as a constant and take the derivative with respect to . In more detail, we have

Solution:

Step 1:  
First, we start by finding the first partial derivatives. So we have to take the partial derivative of with respect to , and the partial derivative of with respect to . This gives us the following:
This gives us the derivative with respect to . To find the derivative with respect to , we do the following:
Step 2:  
Now we have to find the 4 second derivatives, We have


Also,


Showing the equality of mixed partial derivatives,


Finally,


Final Answer:  
The first partial derivatives are:
The second partial derivatives are:

Return to Sample Exam