Difference between revisions of "008A Sample Final A, Question 17"

From Math Wiki
Jump to navigation Jump to search
 
Line 2: Line 2:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Foundations
+
!Foundations:  
 
|-
 
|-
 
|1) How is secant related to either sine or cosine?
 
|1) How is secant related to either sine or cosine?
Line 17: Line 17:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answer A:
+
!Final Answer A:  
 
|-
 
|-
 
|Since <math> \sec(x) = \frac{1}{\cos(x)} </math>, and the angle is in quadrant 2, <math> \sec(\frac{3\pi}{4}) = \frac{1}{\cos(\frac{3\pi}{4})} = \frac{1}{\frac{-1}{\sqrt{2}}} = -\sqrt{2}</math>
 
|Since <math> \sec(x) = \frac{1}{\cos(x)} </math>, and the angle is in quadrant 2, <math> \sec(\frac{3\pi}{4}) = \frac{1}{\cos(\frac{3\pi}{4})} = \frac{1}{\frac{-1}{\sqrt{2}}} = -\sqrt{2}</math>
Line 23: Line 23:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answer B:
+
!Final Answer B: &nbsp;
 
|-
 
|-
 
|The reference angle is <math> \frac{\pi}{6} </math> and is in the fourth quadrant. So tangent will be negative. Since the angle is 30 degees, using the 30-60-90 right triangle, we can conclude that <math>\tan(\frac{11\pi}{6}) = -\frac{\sqrt{3}}{3}</math>
 
|The reference angle is <math> \frac{\pi}{6} </math> and is in the fourth quadrant. So tangent will be negative. Since the angle is 30 degees, using the 30-60-90 right triangle, we can conclude that <math>\tan(\frac{11\pi}{6}) = -\frac{\sqrt{3}}{3}</math>
Line 29: Line 29:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answer C:
+
!Final Answer C: &nbsp;
 
|-
 
|-
 
|Sin(-120) = - sin(120). So you can either compute sin(120) or sin(-120) = sin(240). Since the reference angle is 60 degrees, or <math>\frac{\pi}{3}</math>&nbsp;, So &nbsp;<math> \sin(-120) = \frac{\sqrt{3}}{2}</math>
 
|Sin(-120) = - sin(120). So you can either compute sin(120) or sin(-120) = sin(240). Since the reference angle is 60 degrees, or <math>\frac{\pi}{3}</math>&nbsp;, So &nbsp;<math> \sin(-120) = \frac{\sqrt{3}}{2}</math>

Latest revision as of 23:03, 25 May 2015

Question: Compute the following trig ratios: a)       b)       c)

Foundations:  
1) How is secant related to either sine or cosine?
2) What quadrant is each angle in? What is the reference angle for each? Answer:
1)
2) a) Quadrant 2, b) Quadrant 4, c) Quadrant 3. The reference angles are: , and 60 degrees or

Solution:

Final Answer A:  
Since , and the angle is in quadrant 2,
Final Answer B:  
The reference angle is and is in the fourth quadrant. So tangent will be negative. Since the angle is 30 degees, using the 30-60-90 right triangle, we can conclude that
Final Answer C:  
Sin(-120) = - sin(120). So you can either compute sin(120) or sin(-120) = sin(240). Since the reference angle is 60 degrees, or  , So  

Return to Sample Exam