Difference between revisions of "022 Exam 2 Sample B, Problem 8"

From Math Wiki
Jump to navigation Jump to search
Line 56: Line 56:
 
::<math>P'(x)\,=\,100-10x\,=\,10(10-x).</math>
 
::<math>P'(x)\,=\,100-10x\,=\,10(10-x).</math>
 
|-
 
|-
|The only root of this occurs at <math style="vertical-align: 0%">x=10</math>, and this is our production level to achieve maximum profit.
+
|The only root of this occurs at <math style="vertical-align: -3%">x=10</math>, and this is our production level to achieve maximum profit.
 
|-
 
|-
 
|
 
|

Revision as of 07:00, 17 May 2015

Find the quantity that produces maximum profit, given demand function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p = 70 - 3x} and cost function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C = 120 - 30x + 2x^2.}

Foundations:  
Recall that the demand function, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x)} , relates the price per unit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} to the number of units sold, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} .

Moreover, we have several important important functions:

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(x)} , the total cost to produce Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} units;
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R(x)} , the total revenue (or gross receipts) from producing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} units;
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x)} , the total profit from producing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} units.
In particular, we have the relations
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x)=R(x)-C(x),}
and
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R(x)=x\cdot p(x).}
Using these equations, we can find the maximizing production level by determining when the first derivative of profit is zero.

 Solution:

Step 1:  
Find the Profit Function: We have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R(x)\,=\,x\cdot p(x)\,=\,x\cdot (70-3x)\,=\,70x-3x^2.}
From this,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x)\,=\,R(x)-C(x)\,=\,70x-3x^2- \left(120 - 30x + 2x^2 \right)\,=\,-120 + 100 x - 5 x^2 .}
Step 2:  
Find the Maximum: The equation for marginal revenue is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x)\,=\,-120 + 100 x - 5 x^2 .}
Applying our power rule to each term, we find
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P'(x)\,=\,100-10x\,=\,10(10-x).}
The only root of this occurs at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=10} , and this is our production level to achieve maximum profit.
Final Answer:  
Maximum profit occurs when we produce 10 items.


Return to Sample Exam