Difference between revisions of "022 Exam 2 Sample B, Problem 1"
Jump to navigation
Jump to search
| Line 72: | Line 72: | ||
&=&\displaystyle{\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2}. } | &=&\displaystyle{\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2}. } | ||
\end{array}</math> | \end{array}</math> | ||
| − | Note that many teachers <u>'''do not'''</u> prefer a cleaned up answer, and may request that you <u>'''do not simplify'''</u>. | + | Note that many teachers <u>'''do not'''</u> prefer a cleaned up answer, and may request that you <u>'''do not simplify'''</u>. This problem seems like it would be of that type, as it doesn't simplify too well. Nevertheless, it's always a good idea to ask the teacher if you aren't sure of his or her intent. |
| − | |||
| − | |||
| − | |||
| − | |||
|} | |} | ||
Revision as of 16:15, 17 May 2015
Find the derivative of
| Foundations: | |
|---|---|
| This problem requires several advanced rules of differentiation. In particular, you need | |
| The Chain Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are differentiable functions, then | |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f\circ g)'(x) = f'(g(x))\cdot g'(x).} | |
The Product Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are differentiable functions, then | |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).} | |
The Quotient Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are differentiable functions and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x) \neq 0} , then | |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{f}{g}\right)'(x) = \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left(g(x)\right)^2}. } | |
| Additionally, we will need our power rule for differentiation: | |
| |
| as well as the derivative of natural log: | |
|
Solution:
| Step 1: |
|---|
| We need to identify the composed functions in order to apply the chain rule. Note that if we set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)\,=\,\ln x} , and |
|
| we then have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\,=\,g\circ f(x)\,=\,g\left(f(x)\right).} |
| Step 2: | |
|---|---|
| We can now apply all three advanced techniques. For Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)} , we can use both the quotient and product rule to find | |
|
| Step 3: |
|---|
| We can now use the chain rule to find |
Note that many teachers do not prefer a cleaned up answer, and may request that you do not simplify. This problem seems like it would be of that type, as it doesn't simplify too well. Nevertheless, it's always a good idea to ask the teacher if you aren't sure of his or her intent. |
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2}. } |