Difference between revisions of "022 Exam 2 Sample A, Problem 6"

From Math Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
::<math>\int x^n dn = \frac{x^{n+1}}{n+1} + C.</math>
 
::<math>\int x^n dn = \frac{x^{n+1}}{n+1} + C.</math>
 
|-
 
|-
|Geometrically, we need to integrate the region between the <math style="vertical-align: 0%">x</math>-axis, the curve, and the vertical lines <math style="vertical-align: 0%">x = 1</math> and <math style="vertical-align: 0%">x = 4</math>.
+
|Geometrically, we need to integrate the region between the <math style="vertical-align: 0%">x</math>-axis, the curve, and the vertical lines <math style="vertical-align: -4%">x = 1</math> and <math style="vertical-align: -2%">x = 4</math>.
 
|}
 
|}
  

Revision as of 19:15, 15 May 2015

Find the area under the curve of    between Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=4} .

Foundations:  
For solving the problem, we only require the use of the power rule for integration:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^n dn = \frac{x^{n+1}}{n+1} + C.}
Geometrically, we need to integrate the region between the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -axis, the curve, and the vertical lines Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 4} .

 Solution:

Step 1:  
Set up the integral:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^{\,4} \frac{8}{\sqrt{x}} \,dx.}
Step 2:  
Using the power rule we have:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_1^{\,4} \frac{8}{\sqrt{x}}\,dx} & = & \displaystyle {\int_1^{\,4} 8x^{-1/2}\,dx}\\ \\ & = & \displaystyle{\frac{8 x^{1/2}}{2} \Bigr|_{x=1}^4}\\ \\ & = & 4x^{1/2} \Bigr|_{x=1}^4. \end{array}}
Step 3:  
Now we need to evaluate to get:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4x^{1/2} \Bigr|_{x=1}^4\,=\,4\cdot 4^{1/2} - 4\cdot 1^{1/2} \,=\, 8 - 4 \,=\, 4.}
Final Answer:  
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^{\,4} \frac{8}{\sqrt{x}} \,dx\,=\,4.}

Return to Sample Exam