Difference between revisions of "022 Exam 2 Sample B, Problem 8"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Find the quantity that produces maximum profit, given demand function <math style="vertical-align: -15%">p = 70 - 3x</math> and cost function <math...") |
|||
Line 1: | Line 1: | ||
<span class="exam"> | <span class="exam"> | ||
Find the quantity that produces maximum profit, given demand function <math style="vertical-align: -15%">p = 70 - 3x</math> and cost function  <math style="vertical-align: -8%">C = 120 - 30x + 2x^2.</math> | Find the quantity that produces maximum profit, given demand function <math style="vertical-align: -15%">p = 70 - 3x</math> and cost function  <math style="vertical-align: -8%">C = 120 - 30x + 2x^2.</math> | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Foundations: | ||
+ | |- | ||
+ | |Recall that the '''demand function''', <math style="vertical-align: -25%">p(x)</math>, relates the price per unit <math style="vertical-align: -17%">p</math> to the number of units sold, <math style="vertical-align: 0%">x</math>. | ||
+ | Moreover, we have several important important functions: | ||
+ | |- | ||
+ | | | ||
+ | *<math style="vertical-align: -20%">C(x)</math>, the '''total cost''' to produce <math style="vertical-align: 0%">x</math> units;<br> | ||
+ | *<math style="vertical-align: -20%">R(x)</math>, the '''total revenue''' (or gross receipts) from producing <math style="vertical-align: 0%">x</math> units;<br> | ||
+ | *<math style="vertical-align: -20%">P(x)</math>, the '''total profit''' from producing <math style="vertical-align: 0%">x</math> units.<br> | ||
+ | |- | ||
+ | |In particular, we have the relations | ||
+ | |- | ||
+ | | | ||
+ | ::<math>P(x)=R(x)-C(x),</math> | ||
+ | |- | ||
+ | |and | ||
+ | |- | ||
+ | | | ||
+ | ::<math>R(x)=x\cdot p(x).</math> | ||
+ | |- | ||
+ | |Using these equations, we can find the maximizing production level by determining when the first derivative of profit is zero. | ||
+ | |||
+ | |} | ||
+ | '''Solution:''' | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 1: | ||
+ | |- | ||
+ | |'''Find the Profit Function:''' We have | ||
+ | |- | ||
+ | | | ||
+ | ::<math>R(x)\,=\,x\cdot p(x)\,=\,x\cdot (90-3x)\,=\,90x-3x^2.</math> | ||
+ | |- | ||
+ | |From this, | ||
+ | |- | ||
+ | | | ||
+ | ::<math>P(x)\,=\,R(x)-C(x)\,=\,90x-3x^2- \left(200-30x+x^2 \right)\,=\,120x-4x^2-200 .</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | |'''Find the Maximum:''' The equation for marginal revenue is | ||
+ | |||
+ | |- | ||
+ | | | ||
+ | ::<math>P(x)\,=\,120x-4x^2-200 .</math> | ||
+ | |- | ||
+ | |Applying our power rule to each term, we find | ||
+ | |- | ||
+ | | | ||
+ | ::<math>P'(x)\,=\,120-8x\,=\,8(15-x).</math> | ||
+ | |- | ||
+ | |The only root of this occurs at <math style="vertical-align: -5%">x=15</math>, and this is our production level to achieve maximum profit. | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Final Answer: | ||
+ | |- | ||
+ | |Maximum profit occurs when we produce 15 items. | ||
+ | |} | ||
+ | |||
+ | |||
+ | [[022_Exam_2_Sample_B|'''<u>Return to Sample Exam</u>''']] |
Revision as of 17:41, 15 May 2015
Find the quantity that produces maximum profit, given demand function and cost function
Foundations: |
---|
Recall that the demand function, , relates the price per unit to the number of units sold, .
Moreover, we have several important important functions: |
|
In particular, we have the relations |
|
and |
|
Using these equations, we can find the maximizing production level by determining when the first derivative of profit is zero. |
Solution:
Step 1: |
---|
Find the Profit Function: We have |
|
From this, |
|
Step 2: |
---|
Find the Maximum: The equation for marginal revenue is |
|
Applying our power rule to each term, we find |
|
The only root of this occurs at , and this is our production level to achieve maximum profit. |
Final Answer: |
---|
Maximum profit occurs when we produce 15 items. |