Difference between revisions of "022 Exam 2 Sample B, Problem 8"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Find the quantity that produces maximum profit, given demand function <math style="vertical-align: -15%">p = 70 - 3x</math> and cost function  <math...")
 
Line 1: Line 1:
 
<span class="exam">
 
<span class="exam">
 
Find the quantity that produces maximum profit, given demand function <math style="vertical-align: -15%">p = 70 - 3x</math> and cost function&thinsp; <math style="vertical-align: -8%">C = 120 - 30x + 2x^2.</math>
 
Find the quantity that produces maximum profit, given demand function <math style="vertical-align: -15%">p = 70 - 3x</math> and cost function&thinsp; <math style="vertical-align: -8%">C = 120 - 30x + 2x^2.</math>
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Foundations: &nbsp;
 +
|-
 +
|Recall that the '''demand function''', <math style="vertical-align: -25%">p(x)</math>, relates the price per unit <math style="vertical-align: -17%">p</math> to the number of units sold, <math style="vertical-align: 0%">x</math>.
 +
Moreover, we have several important important functions:
 +
|-
 +
|
 +
*<math style="vertical-align: -20%">C(x)</math>, the '''total cost''' to produce <math style="vertical-align: 0%">x</math> units;<br>
 +
*<math style="vertical-align: -20%">R(x)</math>, the '''total revenue''' (or gross receipts) from producing <math style="vertical-align: 0%">x</math> units;<br>
 +
*<math style="vertical-align: -20%">P(x)</math>, the '''total profit''' from producing <math style="vertical-align: 0%">x</math> units.<br>
 +
|-
 +
|In particular, we have the relations
 +
|-
 +
|
 +
::<math>P(x)=R(x)-C(x),</math>
 +
|-
 +
|and
 +
|-
 +
|
 +
::<math>R(x)=x\cdot p(x).</math>
 +
|-
 +
|Using these equations, we can find the maximizing production level by determining when the first derivative of profit is zero.
 +
 +
|}
 +
&nbsp;'''Solution:'''
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1: &nbsp;
 +
|-
 +
|'''Find the Profit Function:''' We have
 +
|-
 +
|
 +
::<math>R(x)\,=\,x\cdot p(x)\,=\,x\cdot (90-3x)\,=\,90x-3x^2.</math>
 +
|-
 +
|From this,
 +
|-
 +
|
 +
::<math>P(x)\,=\,R(x)-C(x)\,=\,90x-3x^2- \left(200-30x+x^2 \right)\,=\,120x-4x^2-200 .</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|'''Find the Maximum:''' The equation for marginal revenue is
 +
 +
|-
 +
|
 +
::<math>P(x)\,=\,120x-4x^2-200 .</math>
 +
|-
 +
|Applying our power rule to each term, we find
 +
|-
 +
|
 +
::<math>P'(x)\,=\,120-8x\,=\,8(15-x).</math>
 +
|-
 +
|The only root of this occurs at <math style="vertical-align: -5%">x=15</math>, and this is our production level to achieve maximum profit.
 +
|-
 +
|
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Final Answer: &nbsp;
 +
|-
 +
|Maximum profit occurs when we produce 15 items.
 +
|}
 +
 +
 +
[[022_Exam_2_Sample_B|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:41, 15 May 2015

Find the quantity that produces maximum profit, given demand function and cost function 

Foundations:  
Recall that the demand function, , relates the price per unit to the number of units sold, .

Moreover, we have several important important functions:

  • , the total cost to produce units;
  • , the total revenue (or gross receipts) from producing units;
  • , the total profit from producing units.
In particular, we have the relations
and
Using these equations, we can find the maximizing production level by determining when the first derivative of profit is zero.

 Solution:

Step 1:  
Find the Profit Function: We have
From this,
Step 2:  
Find the Maximum: The equation for marginal revenue is
Applying our power rule to each term, we find
The only root of this occurs at , and this is our production level to achieve maximum profit.
Final Answer:  
Maximum profit occurs when we produce 15 items.


Return to Sample Exam