Difference between revisions of "022 Exam 2 Sample B, Problem 5"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Find the antiderivative of <math>\int \frac{2e^{2x}}{e^2x + 1}\, dx.</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations...") |
|||
| Line 1: | Line 1: | ||
| − | <span class="exam"> Find the antiderivative of <math>\int \frac{2e^{2x}}{e^2x + 1}\, dx.</math> | + | <span class="exam"> Find the antiderivative of <math>\int \frac{2e^{2x}}{e^{2x} + 1}\, dx.</math> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 22: | Line 22: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |Use a ''u''-substitution with <math style="vertical-align: -8%">u = e^{ | + | |Use a ''u''-substitution with <math style="vertical-align: -8%">u = e^{2x}+1.</math> This means <math style="vertical-align: 0%">du = 2e^{2x}\,dx</math>. After substitution we have |
::<math>\int \frac{2e^{2x}}{e^{2x} + 1}\, dx\,=\, \int \frac{1}{u}\,du.</math> | ::<math>\int \frac{2e^{2x}}{e^{2x} + 1}\, dx\,=\, \int \frac{1}{u}\,du.</math> | ||
|} | |} | ||
| Line 38: | Line 38: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | | Now we need to substitute back into our original variables using our original substitution <math style="vertical-align: - | + | | Now we need to substitute back into our original variables using our original substitution <math style="vertical-align: -8%">u = e^{2x} + 1</math> |
|- | |- | ||
| − | | to find <math>\log(u) = \log(e^{ | + | | to find <math style="vertical-align: -23%">\log(u) = \log(e^{2x} + 1).</math> |
|} | |} | ||
| Line 53: | Line 53: | ||
|- | |- | ||
| | | | ||
| − | ::<math>\int \frac{2e^{2x}}{e^2x + 1}\, dx \,=\, \log(e^{ | + | ::<math>\int \frac{2e^{2x}}{e^2x + 1}\, dx \,=\, \log(e^{2x}+1) + C.</math> |
|} | |} | ||
[[022_Exam_2_Sample_B|'''<u>Return to Sample Exam</u>''']] | [[022_Exam_2_Sample_B|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 11:07, 18 May 2015
Find the antiderivative of
| Foundations: |
|---|
| This problem requires two rules of integration. In particular, you need |
| Integration by substitution (u - sub): If Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle u=g(x)} is a differentiable functions whose range is in the domain of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} , then |
|
| We also need the derivative of the natural log since we will recover natural log from integration: |
|
Solution:
| Step 1: |
|---|
Use a u-substitution with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u = e^{2x}+1.}
This means Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du = 2e^{2x}\,dx}
. After substitution we have
|
| Step 2: |
|---|
| We can now take the integral remembering the special rule: |
|
| Step 3: |
|---|
| Now we need to substitute back into our original variables using our original substitution Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u = e^{2x} + 1} |
| to find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log(u) = \log(e^{2x} + 1).} |
| Step 4: |
|---|
| Since this integral is an indefinite integral we have to remember to add a constant Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} at the end. |
| Final Answer: |
|---|
|