Difference between revisions of "022 Exam 2 Sample B, Problem 3"
| Line 36: | Line 36: | ||
|- | |- | ||
| | | | ||
| − | ::<math>g(x)\,=\,2x^3,</math> and <math>h(x) \, = \, e^{3x + 5}</math> | + | ::<math>g(x)\,=\,2x^3,\,</math> and <math>\,h(x) \, = \, e^{3x + 5}</math> |
|} | |} | ||
Revision as of 16:38, 15 May 2015
Find the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) \,=\, 2x^3e^{3x+5}} .
| Foundations: | |
|---|---|
| This problem requires several advanced rules of differentiation. In particular, you need | |
| The Chain Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and are differentiable functions, then | |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f\circ g)'(x) = f'(g(x))\cdot g'(x).} | |
The Product Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are differentiable functions, then | |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).} | |
| Additionally, we will need our power rule for differentiation: | |
| |
| as well as the derivative of the exponential function, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^x} : | |
|
Solution:
| Step 1: |
|---|
| We need to start by identifying the two functions that are being multiplied together so we can apply the product rule. |
|
| Step 2: |
|---|
| We can now apply the three advanced techniques.This allows us to see that |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} f'(x)&=&2(x^3)' e^{3x+5}+2x^3(e^{3x+5})' \\ &=&6x^2e^{3x+5}+2x^3(3e^{3x+5})\\ & = &6x^2e^{3x+5}+6x^3e^{3x+5} \end{array}} |
| Final Answer: |
|---|
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6x^2e^{3x+5}+6x^3e^{3x+5} } |