Difference between revisions of "022 Exam 2 Sample B, Problem 3"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Find the derivative: <math style="vertical-align: -18%">f(x) \,=\, 2x^3e^{3x+5}</math>.")
 
Line 1: Line 1:
<span class="exam"> Find the derivative: <math style="vertical-align: -18%">f(x) \,=\, 2x^3e^{3x+5}</math>.
+
<span class="exam"> Find the derivative of <math style="vertical-align: -18%">f(x) \,=\, 2x^3e^{3x+5}</math>.
 +
 
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Foundations: &nbsp;
 +
|-
 +
|This problem requires several advanced rules of differentiation.  In particular, you need
 +
|-
 +
|'''The Chain Rule:''' If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -15%;">g</math> are differentiable functions, then
 +
|-
 +
 
 +
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>(f\circ g)'(x) = f'(g(x))\cdot g'(x).</math>
 +
|-
 +
|<br>'''The Product Rule:'''  If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -15%;">g</math> are differentiable functions, then
 +
|-
 +
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>(fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).</math>
 +
|-
 +
|Additionally, we will need our power rule for differentiation:
 +
|-
 +
|
 +
::<math style="vertical-align: -21%;">\left(x^n\right)'\,=\,nx^{n-1},</math> for <math style="vertical-align: -25%;">n\neq 0</math>,
 +
|-
 +
|as well as the derivative of the exponential function, <math>e^x</math>:
 +
|-
 +
|
 +
::<math>\left(e^{f(x)}\right)'\,=\,\left(f(x)\right)'\cdot e^{f(x)}.</math>
 +
|<br>
 +
|}
 +
 
 +
&nbsp;'''Solution:'''
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1: &nbsp;
 +
|-
 +
|We need to identify the composed functions in order to apply the chain rule.  Note that if we set <math style="vertical-align: -21%">g(x)\,=\,\ln x</math>, and
 +
|-
 +
|
 +
::<math>f(x)\,=\,\frac{(x+5)(x-1)}{x},</math>
 +
|-
 +
|we then have&thinsp; <math style="vertical-align: -21%">y\,=\,g\circ f(x)\,=\,g\left(f(x)\right).</math>
 +
|}

Revision as of 16:25, 15 May 2015

Find the derivative of .


Foundations:  
This problem requires several advanced rules of differentiation. In particular, you need
The Chain Rule: If and are differentiable functions, then

    

The Product Rule: If and are differentiable functions, then

    
Additionally, we will need our power rule for differentiation:
for ,
as well as the derivative of the exponential function, :

 Solution:

Step 1:  
We need to identify the composed functions in order to apply the chain rule. Note that if we set , and
we then have