Difference between revisions of "022 Exam 2 Sample B, Problem 1"

From Math Wiki
Jump to navigation Jump to search
Line 39: Line 39:
 
|-
 
|-
 
|
 
|
::<math>f(x)\,=\,\frac{(x+5)(x-1)}{x},</math>
+
::<math>f(x)\,=\,\frac{(x+1)^4}{(2x - 5)(x + 4)},</math>
 
|-
 
|-
 
|we then have&thinsp; <math style="vertical-align: -21%">y\,=\,g\circ f(x)\,=\,g\left(f(x)\right).</math>
 
|we then have&thinsp; <math style="vertical-align: -21%">y\,=\,g\circ f(x)\,=\,g\left(f(x)\right).</math>
Line 51: Line 51:
 
|<br>
 
|<br>
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
f'(x) & = & \displaystyle{\frac{\left((x+5)(x-1)\right)'x-(x+5)(x-1)(x)'}{x^{2}}}\\
+
f'(x)&=&\frac{((x+1)^4)'(2x-5)(x+4)-((2x-5)(x+4))'(x+1)^4}{(2x-5)^2(x+4)^2} \\
\\
+
&=&\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2}.
& = &  \displaystyle{\frac{\left[x^{2}+4x-5\right]'x-(x^{2}+4x-5)(x)'}{x^{2}}}\\
 
\\
 
& = & \displaystyle{\frac{(2x+5)x-(x^{2}+4x-5)(1)}{x^{2}}}\\
 
\\
 
& = &  \displaystyle{\frac{2x^{2}-5x-x^{2}-4x+5}{x^{2}}}\\
 
\\
 
& = &  \displaystyle{\frac{x^{2}-9x+5}{x^{2}}}.
 
 
\end{array}</math>
 
\end{array}</math>
 
|
 
|
Line 74: Line 67:
 
\\
 
\\
 
& = & g'\left(f(x)\right)\cdot f'(x)\\
 
& = & g'\left(f(x)\right)\cdot f'(x)\\
\\& = & \displaystyle{\frac{x}{(x+5)(x-1)}\cdot\frac{x^{2}-9x+5}{x^{2}}}\\
+
\\& = &\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{((x+1)^4)'(2x-5)(x+4)-((2x-5)(x+4))'(x+1)^4}{(2x-5)^2(x+4)^2} \\
 
\\
 
\\
& = & \displaystyle{\frac{x^{2}-9x+5}{x^{3}+4x^{2}-5x}.}
+
&=&\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2}  
 
\end{array}</math>
 
\end{array}</math>
 
Note that many teachers <u>'''do not'''</u> prefer a cleaned up answer, and may request that you <u>'''do not simplify'''</u>.  In this case, we could write the answer as<br>  
 
Note that many teachers <u>'''do not'''</u> prefer a cleaned up answer, and may request that you <u>'''do not simplify'''</u>.  In this case, we could write the answer as<br>  
 
|-
 
|-
 
|
 
|
::<math>y'=\displaystyle {\frac{x}{(x+5)(x-1)}\cdot\frac{(2x+5)x-(x^{2}+4x-5)(1)}{x^{2}}.}</math>
+
::<math>y'=\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2} </math>
  
 
|}
 
|}
Line 88: Line 81:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|<math>y'\,=\,\displaystyle{\frac{x^{2}-9x+5}{x^{3}+4x^{2}-5x}.}</math>
+
|<math>y'=\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2} </math>
 
|}
 
|}
  
 
[[022_Exam_2_Sample_B|'''<u>Return to Sample Exam</u>''']]
 
[[022_Exam_2_Sample_B|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:19, 15 May 2015

Find the derivative of  

Foundations:  
This problem requires several advanced rules of differentiation. In particular, you need
The Chain Rule: If and are differentiable functions, then

    

The Product Rule: If and are differentiable functions, then

    

The Quotient Rule: If and are differentiable functions and  , then

    
Additionally, we will need our power rule for differentiation:
for ,
as well as the derivative of natural log:

 Solution:

Step 1:  
We need to identify the composed functions in order to apply the chain rule. Note that if we set , and
we then have 
Step 2:  
We can now apply all three advanced techniques. For , we must use both the quotient and product rule to find

Step 3:  
We can now use the chain rule to find

Note that many teachers do not prefer a cleaned up answer, and may request that you do not simplify. In this case, we could write the answer as

Final Answer:  

Return to Sample Exam