Difference between revisions of "022 Exam 2 Sample A, Problem 3"

From Math Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
|This problem requires two rules of integration.  In particular, you need
 
|This problem requires two rules of integration.  In particular, you need
 
|-
 
|-
|'''Integration by substitution (U - sub):''' If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -15%;">g</math> are differentiable functions, then
+
|'''Integration by substitution (U - sub):''' If <math>u = g(x)</math> is a differentiable functions whose range is in the domain of <math>f</math>, then
 
|-
 
|-
 
+
|<math>\int g'(x)f(g(x)) dx = \int f(u) du.</math>
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>(f\circ g)'(x) = f'(g(x))\cdot g'(x).</math>
 
 
|-
 
|-
|<br>'''The Product Rule:'''  If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -15%;">g</math> are differentiable functions, then
+
|We also need the derivative of the natural log since we will recover natural log from integration:
 
|-
 
|-
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>(fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).</math>
+
|<math>\left(ln(x)\right)' = \frac{1}{x}</math>
|-
 
|<br>'''The Quotient Rule:'''  If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -15%;">g</math> are differentiable functions and <math style="vertical-align: -21%;">g(x) \neq 0</math>&thinsp;, then
 
|-
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>\left(\frac{f}{g}\right)'(x) = \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left(g(x)\right)^2}. </math>
 
|-
 
|Additionally, we will need our power rule for differentiation:
 
|-
 
|
 
::<math style="vertical-align: -21%;">\left(x^n\right)'\,=\,nx^{n-1},</math> for <math style="vertical-align: -25%;">n\neq 0</math>,
 
|-
 
|as well as the derivative of natural log:
 
|-
 
|
 
::<math>\left(\ln x\right)'\,=\,\frac{1}{x}.</math>
 
|<br>
 
 
|}
 
|}
  

Revision as of 10:02, 15 May 2015

Find the antiderivative of


Foundations:  
This problem requires two rules of integration. In particular, you need
Integration by substitution (U - sub): If is a differentiable functions whose range is in the domain of , then
We also need the derivative of the natural log since we will recover natural log from integration:

 Solution:

Step 1:  
Use a U-substitution with This means , and after substitution we have
Step 2:  
We can now take the integral remembering the special rule:
Step 3:  
Now we need to substitute back into our original variables using our original substitution
to get
Step 4:  
Since this integral is an indefinite integral we have to remember to add "+ C" at the end.
Final Answer:  

Return to Sample Exam