Difference between revisions of "022 Exam 2 Sample A, Problem 1"
Jump to navigation
Jump to search
| Line 15: | Line 15: | ||
|<br> <math>(fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).</math> | |<br> <math>(fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).</math> | ||
|- | |- | ||
| − | |<br>'''The Quotient Rule:''' If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: - | + | |<br>'''The Quotient Rule:''' If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -20%;">g</math> are differentiable functions and <math style="vertical-align: -21%;">g(x) \neq 0</math> , then |
|- | |- | ||
|<br> <math>\left(\frac{f}{g}\right)'(x) = \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left(g(x)\right)^2}. </math> | |<br> <math>\left(\frac{f}{g}\right)'(x) = \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left(g(x)\right)^2}. </math> | ||
| Line 32: | Line 32: | ||
::<math>f(x)\,=\,\frac{(x+5)(x-1)}{x},</math> | ::<math>f(x)\,=\,\frac{(x+5)(x-1)}{x},</math> | ||
|- | |- | ||
| − | |we then have <math style="vertical-align: -21%">y\,=\,g\circ f(x)\,=\,g\left(f(x)\right).</math> | + | |we then have  <math style="vertical-align: -21%">y\,=\,g\circ f(x)\,=\,g\left(f(x)\right).</math> |
|} | |} | ||
| Line 38: | Line 38: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |We can now apply all three advanced techniques. For | + | |We can now apply all three advanced techniques. For <math style="vertical-align: -20%">f'(x)</math>, we must use both the quotient and product rule to find |
| + | |- | ||
| + | |<br> | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | f'(x) & = & \displaystyle{\frac{\left((x+5)(x-1)\right)'x-(x+5)(x-1)(x)'}{x^{2}}}\\ | ||
| + | \\ | ||
| + | & = & \displaystyle{\frac{\left[x^{2}+4x-5\right]'x-(x^{2}+4x-5)(x)'}{x^{2}}}\\ | ||
| + | \\ | ||
| + | & = & \displaystyle{\frac{(2x+5)x-(x^{2}+4x-5)(1)}{x^{2}}}\\ | ||
| + | \\ | ||
| + | & = & \displaystyle{\frac{2x^{2}-5x-x^{2}-4x+5}{x^{2}}}\\ | ||
| + | \\ | ||
| + | & = & \displaystyle{\frac{x^{2}-9x+5}{x^{2}}}. | ||
| + | \end{array}</math> | ||
| | | | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | ! | + | !Step 3: |
|- | |- | ||
| − | |We can | + | |We can now use the chain rule to find<br> |
|- | |- | ||
| − | |& | + | | |
| + | ::<math>\begin{array}{rcl} | ||
| + | y' & = & \left(g\circ f\right)'(x)\\ | ||
| + | \\ | ||
| + | & = & g'\left(f(x)\right)\cdot f'(x)\\ | ||
| + | \\& = & \displaystyle{\frac{x}{(x+5)(x-1)}\cdot\frac{x^{2}-9x+5}{x^{2}}}\\ | ||
| + | \\ | ||
| + | & = & \displaystyle{\frac{x^{2}-9x+5}{x^{3}+4x^{2}-5x}.} | ||
| + | \end{array}</math> | ||
| + | Note that many teachers <u>'''do not'''</u> prefer a cleaned up answer, and may request that you <u>'''do not simplify'''</u>. In this case, we could write the answer as<br> | ||
|- | |- | ||
| − | | | + | | |
| + | ::<math>y'=\displaystyle {\frac{x}{(x+5)(x-1)}\cdot\frac{(2x+5)x-(x^{2}+4x-5)(1)}{x^{2}}.}</math> | ||
| + | |||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Final Answer: | ||
|- | |- | ||
| − | | | + | |<math>y'\,=\,\displaystyle{\frac{x^{2}-9x+5}{x^{3}+4x^{2}-5x}.}</math> |
|} | |} | ||
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']] | [[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 14:47, 14 May 2015
Find the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\,=\,\ln \frac{(x+5)(x-1)}{x}.}
| Foundations: |
|---|
| This problem requires several advanced rules of differentiation. In particular, you need |
| The Chain Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are differentiable functions, then |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f\circ g)'(x) = f'(g(x))\cdot g'(x).} |
The Product Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are differentiable functions, then |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).} |
The Quotient Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are differentiable functions and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x) \neq 0} , then |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{f}{g}\right)'(x) = \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left(g(x)\right)^2}. } |
Solution:
| Step 1: |
|---|
| We need to identify the composed functions in order to apply the chain rule. Note that if we set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)\,=\,\ln x} , and |
|
| we then have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\,=\,g\circ f(x)\,=\,g\left(f(x)\right).} |
| Step 2: | |
|---|---|
| We can now apply all three advanced techniques. For Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)} , we must use both the quotient and product rule to find | |
|
| Step 3: |
|---|
| We can now use the chain rule to find |
Note that many teachers do not prefer a cleaned up answer, and may request that you do not simplify. In this case, we could write the answer as |
|
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'\,=\,\displaystyle{\frac{x^{2}-9x+5}{x^{3}+4x^{2}-5x}.}} |