Difference between revisions of "022 Exam 1 Sample A, Problem 8"
Jump to navigation
Jump to search
m |
|||
Line 26: | Line 26: | ||
|<table> | |<table> | ||
<tr style="vertical-align: middle"> | <tr style="vertical-align: middle"> | ||
− | <td> <math style="vertical-align: -70%">f'(x)</math> </td> | + | <td> <math style="vertical-align: -70%">f'(x)</math> </td> |
<td><math>=\,\,\frac{\left[\left(3x-1\right)^{2}\right]'\cdot(x^{3}-7) \,\,-\,\, \left(3x-1\right)^{2}\cdot(x^{3}-7)'}{(x^{3}-7)^{2}}</math></td> | <td><math>=\,\,\frac{\left[\left(3x-1\right)^{2}\right]'\cdot(x^{3}-7) \,\,-\,\, \left(3x-1\right)^{2}\cdot(x^{3}-7)'}{(x^{3}-7)^{2}}</math></td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td></td> | <td></td> | ||
− | <td><math>=\frac{\left[2\left(3x-1\right)\cdot3\right]\cdot(x^{3}-7) \,\,-\,\, \left(3x-1\right)^{2}\cdot3x^{2}}{(x^{3}-7)^{2}}.</math></td> | + | <td><math>=\,\,\frac{\left[2\left(3x-1\right)\cdot3\right]\cdot(x^{3}-7) \,\,-\,\, \left(3x-1\right)^{2}\cdot3x^{2}}{(x^{3}-7)^{2}}.</math></td> |
</table> | </table> | ||
|} | |} |
Latest revision as of 15:34, 2 April 2015
8. Find the derivative of the function . You do not need to simplify your answer.
Foundations: |
---|
This problem involves some more advanced rules of differentiation. In particular, it requires |
The Chain Rule: If and are differentiable functions, then |
The Quotient Rule: If and are differentiable functions and , then |
Solution: | ||||
---|---|---|---|---|
Note that we need to use chain rule to find the derivative of . Then we find | ||||