Difference between revisions of "Math 22 Integration by Parts and Present Value"
Jump to navigation
Jump to search
Line 26: | Line 26: | ||
|and <math>dv=e^{3x}dx</math> and <math>v=\frac{1}{3}e^{3x}</math> | |and <math>dv=e^{3x}dx</math> and <math>v=\frac{1}{3}e^{3x}</math> | ||
|- | |- | ||
− | |Then, by integration by parts: <math>\int xe^{3x}dx=x\frac{1}{3}e^{3x} -\int\frac{1}{3}e^{3x} dx=x\frac{1}{3}e^{3x}-\frac{1}{9}e^{3x} </math> | + | |Then, by integration by parts: <math>\int xe^{3x}dx=x\frac{1}{3}e^{3x} -\int\frac{1}{3}e^{3x} dx=x\frac{1}{3}e^{3x}-\frac{1}{9}e^{3x} +C </math> |
|} | |} | ||
+ | '''3)''' <math>\int x^2e^{-x}dx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |Let <math>u=x^2</math>, <math>du=2xdx</math> | ||
+ | |- | ||
+ | |and <math>dv=e^{-x}dx</math> and <math>v=-e^{-x}</math> | ||
+ | |- | ||
+ | |Then, by integration by parts: <math>\int x^2e^{-x}dx=x^2(-e^{-x}) -\int-e^{-x}2x dx=-x^2e^{-x}+\int 2xe^{-x}dx </math> | ||
+ | |- | ||
+ | |Now, we apply integration by parts the second time for <math>\int 2xe^{-x}dx</math> | ||
+ | |- | ||
+ | |Let <math>u=2x</math>, <math>du=2dx</math> | ||
+ | |- | ||
+ | |and <math>dv=e^{-x}dx</math> and <math>v=-e^{-x}</math> | ||
+ | |- | ||
+ | |So <math>\int 2xe^{-x}dx=2x(-e^{-x})-\int -e^{-x} 2dx=-2xe^{-x}-e^{-x}+C</math> | ||
+ | |- | ||
+ | |Therefore, <math>\int x^2e^{-x}dx=-x^2e^{-x}-2xe^{-x}-e^{-x}+C</math> | ||
+ | |} | ||
+ | '''4)''' <math>\int xe^{3x}dx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |Let <math>u=x</math>, <math>du=dx</math> | ||
+ | |- | ||
+ | |and <math>dv=e^{3x}dx</math> and <math>v=\frac{1}{3}e^{3x}</math> | ||
+ | |- | ||
+ | |Then, by integration by parts: <math>\int xe^{3x}dx=x\frac{1}{3}e^{3x} -\int\frac{1}{3}e^{3x} dx=x\frac{1}{3}e^{3x}-\frac{1}{9}e^{3x} +C </math> | ||
+ | |} | ||
Revision as of 06:10, 18 August 2020
Integration by Parts
Let and be differentiable functions of .
Exercises Use integration by parts to evaluation:
1)
Solution: |
---|
Let , |
and and |
Then, by integration by parts: |
2)
Solution: |
---|
Let , |
and and |
Then, by integration by parts: |
3)
Solution: |
---|
Let , |
and and |
Then, by integration by parts: |
Now, we apply integration by parts the second time for |
Let , |
and and |
So |
Therefore, |
4)
Solution: |
---|
Let , |
and and |
Then, by integration by parts: |
This page were made by Tri Phan