Difference between revisions of "Math 22 Integration by Parts and Present Value"

From Math Wiki
Jump to navigation Jump to search
Line 5: Line 5:
 
   <math>\int u dv=uv-\int v du</math>
 
   <math>\int u dv=uv-\int v du</math>
  
 +
'''Exercises''' Use integration by parts to evaluation:
 +
 +
'''1)''' <math>\int \ln x dx</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Let <math>u=\ln x</math>, <math>>du=\frac{1}{x}dx</math>
 +
|-
 +
|and <math>dv=dx</math> and <math>v=x</math>
 +
|-
 +
|Then, by integration by parts: <math>\int \ln x dx=x\ln x-\int x\frac{1}{x}dx=x\ln x-\int dx=x\ln x -x +C</math>
 +
|}
 +
 +
'''2)''' <math>\int xe^{3x}dx</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Let <math>u=x</math>, <math>du=dx</math>
 +
|-
 +
|and <math>dv=e^{3x}dx</math> and <math>v=\frac{1}{3}e^{3x}</math>
 +
|-
 +
|Then, by integration by parts: <math>\int xe^{3x}dx=x\frac{1}{3}e^{3x} -\int\frac{1}{3}e^{3x} dx=x\frac{1}{3}e^{3x}-\frac{1}{9}e^{3x} </math>
 +
|}
  
  

Revision as of 05:56, 18 August 2020

Integration by Parts

 Let  and  be differentiable functions of .
 
 

Exercises Use integration by parts to evaluation:

1)

Solution:  
Let ,
and and
Then, by integration by parts:

2)

Solution:  
Let ,
and and
Then, by integration by parts:




Return to Topics Page

This page were made by Tri Phan