Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"

From Math Wiki
Jump to navigation Jump to search
Line 60: Line 60:
 
|Let <math>u=x^2</math>, so <math>du=2xdx</math>, so <math>dx=\frac{du}{2x}</math>
 
|Let <math>u=x^2</math>, so <math>du=2xdx</math>, so <math>dx=\frac{du}{2x}</math>
 
|-
 
|-
|Consider <math>\int \frac{3x}{x^2}dx=\int\frac{3x}{u}\frac{du}{2x}=\int\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\ln|u|+C=\frac{3}{2}\ln |x^2|+C</math>
+
|Consider <math>\int \frac{3x}{x^2}dx=\int\frac{3x}{u}\frac{du}{2x}=\int\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\int\frac{1}{u}du=\frac{3}{2}\ln|u|+C=\frac{3}{2}\ln |x^2|+C</math>
 
|}
 
|}
  
Line 76: Line 76:
 
|Let <math>u=2x-5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{2}</math>
 
|Let <math>u=2x-5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{2}</math>
 
|-
 
|-
|Consider <math>\int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2}\int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C</math>
+
|Consider <math>\int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2} \int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C</math>
 
|}
 
|}
  

Revision as of 07:53, 15 August 2020

Integrals of Exponential Functions

 Let  be a differentiable function of , then
 
 
 

Exercises 1 Find the indefinite integral

1)

Solution:  

2)

Solution:  
Let , so , so
Consider

3)

Solution:  

4)

Solution:  
Let , so , so
Consider

Using the Log Rule

 Let  be a differentiable function of , then
 
 
 

Exercises 2 Find the indefinite integral

1)

Solution:  

2)

Solution:  
Let , so , so
Consider

3)

Solution:  

4)

Solution:  
Let , so , so
Consider


Return to Topics Page

This page were made by Tri Phan