Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"
Jump to navigation
Jump to search
Line 60: | Line 60: | ||
|Let <math>u=x^2</math>, so <math>du=2xdx</math>, so <math>dx=\frac{du}{2x}</math> | |Let <math>u=x^2</math>, so <math>du=2xdx</math>, so <math>dx=\frac{du}{2x}</math> | ||
|- | |- | ||
− | |Consider <math>\int \frac{3x}{x^2}dx=\int\frac{3x}{u}\frac{du}{2x}=\int\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\ln|u|+C=\frac{3}{2}\ln |x^2|+C</math> | + | |Consider <math>\int \frac{3x}{x^2}dx=\int\frac{3x}{u}\frac{du}{2x}=\int\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\int\frac{1}{u}du=\frac{3}{2}\ln|u|+C=\frac{3}{2}\ln |x^2|+C</math> |
|} | |} | ||
Line 76: | Line 76: | ||
|Let <math>u=2x-5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{2}</math> | |Let <math>u=2x-5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{2}</math> | ||
|- | |- | ||
− | |Consider <math>\int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2}\int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C</math> | + | |Consider <math>\int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2} \int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C</math> |
|} | |} | ||
Revision as of 07:53, 15 August 2020
Integrals of Exponential Functions
Let be a differentiable function of , then
Exercises 1 Find the indefinite integral
1)
Solution: |
---|
2)
Solution: |
---|
Let , so , so |
Consider |
3)
Solution: |
---|
4)
Solution: |
---|
Let , so , so |
Consider |
Using the Log Rule
Let be a differentiable function of , then
Exercises 2 Find the indefinite integral
1)
Solution: |
---|
2)
Solution: |
---|
Let , so , so |
Consider |
3)
Solution: |
---|
4)
Solution: |
---|
Let , so , so |
Consider |
This page were made by Tri Phan