Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"
Jump to navigation
Jump to search
Line 44: | Line 44: | ||
<math>\int\frac{1}{u}\frac{du}{dx}dx=\int\frac{1}{u}du=\ln|u|+C</math> | <math>\int\frac{1}{u}\frac{du}{dx}dx=\int\frac{1}{u}du=\ln|u|+C</math> | ||
+ | |||
+ | '''Exercises 2''' Find the indefinite integral | ||
+ | |||
+ | '''1)''' <math>\int \frac{3}{x}dx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math>\int \frac{3}{x}dx=3\int \frac{1}{x}=3\ln |x| +C</math> | ||
+ | |} | ||
+ | |||
+ | '''2)''' <math>\int \frac{3x}{x^2}dx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |Let <math>u=x^2</math>, so <math>du=2xdx</math>, so <math>dx=\frac{du}{2x}</math> | ||
+ | |- | ||
+ | |Consider <math>\int \frac{3x}{x^2}dx=\int\frac{3x}{u}\frac{du}{2x}=\int\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\ln|u|+C=\frac{3}{2}\ln |x^2|+C</math> | ||
+ | |} | ||
+ | |||
+ | '''3)''' <math>\int (3e^x-6x)dx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math>\int (3e^x-6x)dx=\int (3e^x)dx -\int 6xdx=3e^x-3x^2+C</math> | ||
+ | |} | ||
+ | |||
+ | '''4)''' <math>\int e^{2x-5}dx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |Let <math>u=2x-5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{2}</math> | ||
+ | |- | ||
+ | |Consider <math>\int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2}\int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C</math> | ||
+ | |} | ||
+ | |||
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' |
Revision as of 07:51, 15 August 2020
Integrals of Exponential Functions
Let be a differentiable function of , then
Exercises 1 Find the indefinite integral
1)
Solution: |
---|
2)
Solution: |
---|
Let , so , so |
Consider |
3)
Solution: |
---|
4)
Solution: |
---|
Let , so , so |
Consider |
Using the Log Rule
Let be a differentiable function of , then
Exercises 2 Find the indefinite integral
1)
Solution: |
---|
2)
Solution: |
---|
Let , so , so |
Consider |
3)
Solution: |
---|
4)
Solution: |
---|
Let , so , so |
Consider |
This page were made by Tri Phan