Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"
Jump to navigation
Jump to search
Line 38: | Line 38: | ||
|Consider <math>\int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2}\int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C</math> | |Consider <math>\int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2}\int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C</math> | ||
|} | |} | ||
+ | |||
+ | ==Using the Log Rule= | ||
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' |
Revision as of 07:39, 15 August 2020
Integrals of Exponential Functions
Let be a differentiable function of , then
Exercises 1 Find the indefinite integral
1)
Solution: |
---|
2)
Solution: |
---|
Let , so , so |
Consider |
3)
Solution: |
---|
4)
Solution: |
---|
Let , so , so |
Consider |
=Using the Log Rule
This page were made by Tri Phan