Difference between revisions of "Math 22 Derivatives of Exponential Functions"

From Math Wiki
Jump to navigation Jump to search
(Created page with "==Derivative of the Natural Exponential Function== Let <math>u</math> be a differentiable function of <math>x</math>. Then, 1.<math>\frac{d}{dx}[e^x]=e^x</math> 2.<math>...")
 
Line 4: Line 4:
 
   2.<math>\frac{d}{dx}[e^u]=e^u\frac{du}{dx}</math>
 
   2.<math>\frac{d}{dx}[e^u]=e^u\frac{du}{dx}</math>
  
 +
'''Exercises''' Differentiate each function:
 +
 +
'''a)''' <math>f(x)=e^{2x}</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>f'(x)=2e^{2x}</math>
 +
|}
 +
 +
'''b)''' <math>f(x)=e^{3x^2}</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>f'(x)=6xe^{3x^2}</math>
 +
|}
 +
 +
'''c)''' <math>f(x)=e^{-x^2}</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>f'(x)=-2xe^{2x}</math>
 +
|}
 +
 +
'''d)''' <math>f(x)=4e^{-x}</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>f'(x)=-4e^{-x}</math>
 +
|}
 +
 +
'''e)''' <math>f(x)=\frac{e^x-e^{-x}}{2}</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>f(x)=\frac{e^x-e^{-x}}{2}=\frac{e^x}{2}-\frac{e^{-x}}{2}=\frac{1}{2}e^x-\frac{1}{2}e^{-x}</math>
 +
|-
 +
|<math>f'(x)=\frac{1}{2}e^x-\frac{1}{2}(-1)e^{-x}</math>
 +
|}
 
[[Math_22| '''Return to Topics Page''']]
 
[[Math_22| '''Return to Topics Page''']]
  
 
'''This page were made by [[Contributors|Tri Phan]]'''
 
'''This page were made by [[Contributors|Tri Phan]]'''

Revision as of 07:39, 11 August 2020

Derivative of the Natural Exponential Function

 Let  be a differentiable function of . Then,
 1.
 2.

Exercises Differentiate each function:

a)

Solution:  

b)

Solution:  

c)

Solution:  

d)

Solution:  

e)

Solution:  

Return to Topics Page

This page were made by Tri Phan