Difference between revisions of "Math 22 Chain Rule"
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
In another word, <math>\frac{d}{dx}[f(g(x))]=f'(g(x))\cdot g'(x)</math> | In another word, <math>\frac{d}{dx}[f(g(x))]=f'(g(x))\cdot g'(x)</math> | ||
+ | |||
+ | '''Example''': Find derivative of | ||
+ | |||
+ | '''1)''' <math>f(x)=\sqrt{x^2+3x-4}</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math style="vertical-align: -5px">f(x)=f(x)=\sqrt{x^2+3x-4}=(x^2+3x-4)^{\frac{1}{2}}</math> | ||
+ | |- | ||
+ | |<math>f'(x)=\frac{1}{2}\cdot (x^2+3x-4)^{\frac{1}{2} -1}\frac{d}{dx}[x^2+3x-4]</math> | ||
+ | |- | ||
+ | |<math=(x^2+3x-4)^{\frac{-1}{2}}(2x+3) | ||
+ | |} | ||
+ | |||
+ | '''2)''' <math>f(x)=(x^2+1)^100</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math style="vertical-align: -5px">f'(x)=100(x^2+1)^99 \frac{d}{dx}[x^2+1]</math> | ||
+ | |- | ||
+ | |<math>=100(x^2+1)^99 (2x)</math> | ||
+ | |} | ||
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' |
Revision as of 06:10, 23 July 2020
The Chain Rule
If is a differentiable function of and is a differentiable function of , then is a differentiable function of and In another word,
Example: Find derivative of
1)
Solution: |
---|
<math=(x^2+3x-4)^{\frac{-1}{2}}(2x+3) |
2)
Solution: |
---|
This page were made by Tri Phan