Difference between revisions of "009A Sample Final A, Problem 1"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span style="font-size:135%"><font face=Times Roman> 1. Find the following limits:<br>   (a)   <math style="vertical-align: -45%;">\lim_{x\rightarrow0}\frac{\ta...")
 
m
Line 22: Line 22:
 
|
 
|
 
*We can multiply the numerator and denominator by the conjugate of the denominator.  This frequently results in a term that cancels, allowing us to then just plug in our limit value.
 
*We can multiply the numerator and denominator by the conjugate of the denominator.  This frequently results in a term that cancels, allowing us to then just plug in our limit value.
*We can factor a term creatively.  For example, <math style="vertical-align: -5%;">x-1</math> can be factored as <math style="vertical-align: -45%;">\left(\sqrt{x}-1\right) \left(\sqrt{x}+1\right)</math>&thinsp;, or as <math style="vertical-align: -60%;">\left(\sqrt[3]{x}-1\right)\left(\left(\sqrt[3]{x}\right)^{2}+\sqrt[3]{x}+1\right)</math>&thinsp;, both of which could result in a factor that cancels in our fraction.
+
*We can factor a term creatively.  For example, <math style="vertical-align: -8%;">x-1</math> can be factored as <math style="vertical-align: -48%;">\left(\sqrt{x}-1\right) \left(\sqrt{x}+1\right)</math>&thinsp;, or as <math style="vertical-align: -70%;">\left(\sqrt[3]{x}-1\right)\left(\left(\sqrt[3]{x}\right)^{2}+\sqrt[3]{x}+1\right)</math>&thinsp;, both of which could result in a factor that cancels in our fraction.
*We can apply '''l'H&ocirc;pital's Rule:''' Suppose <math style="vertical-align: 0%;">c</math> is contained in some interval <math style="vertical-align: 0%;">I</math>. If <math style="vertical-align: -50%;">\lim_{x \to c}f(x)=\lim_{x \to c}g(x)=0 \text{ or } \pm\infty</math>&thinsp; and <math style="vertical-align: -75%;">\lim_{x\to c}\frac{f'(x)}{g'(x)}</math> &nbsp; exists, and <math style="vertical-align: -20%;">g'(x)\neq 0</math>&thinsp; for all <math style="vertical-align: -20%;">x\neq c</math> in <math style="vertical-align: 0%;">I</math>, then <math style="vertical-align: -73%;">\lim_{x\to c}\frac{f(x)}{g(x)} = \lim_{x\to c}\frac{f'(x)}{g'(x)}</math>.  
+
*We can apply '''l'H&ocirc;pital's Rule:''' Suppose <math style="vertical-align: 0%;">c</math> is contained in some interval <math style="vertical-align: 0%;">I</math>. If <math style="vertical-align: -60%;">\lim_{x \to c}f(x)=\lim_{x \to c}g(x)=0 \text{ or } \pm\infty</math>&thinsp; and <math style="vertical-align: -85%;">\lim_{x\to c}\frac{f'(x)}{g'(x)}</math> &nbsp; exists, and <math style="vertical-align: -25%;">g'(x)\neq 0</math>&thinsp; for all <math style="vertical-align: -23%;">x\neq c</math> in <math style="vertical-align: 0%;">I</math>, then <math style="vertical-align: -83%;">\lim_{x\to c}\frac{f(x)}{g(x)} = \lim_{x\to c}\frac{f'(x)}{g'(x)}</math>.  
 
|-
 
|-
 
|Note that the first requirement in l'H&ocirc;pital's Rule is that the fraction <u>''must''</u> be an indeterminate form.  This should be shown in your answer for any exam question.<br>
 
|Note that the first requirement in l'H&ocirc;pital's Rule is that the fraction <u>''must''</u> be an indeterminate form.  This should be shown in your answer for any exam question.<br>

Revision as of 09:15, 27 March 2015

1. Find the following limits:
   (a)  

   (b)

   (c)  

   (d)  

   (e) 

Foundations:  
When evaluating limits of rational functions, the first idea to try is to simply plug in the limit. Unfortunately, most (but not all) exam questions require more work. Many of them will evaluate to an indeterminate form, or something of the form

        or   

In this case, here are several approaches to try:
  • We can multiply the numerator and denominator by the conjugate of the denominator. This frequently results in a term that cancels, allowing us to then just plug in our limit value.
  • We can factor a term creatively. For example, can be factored as  , or as  , both of which could result in a factor that cancels in our fraction.
  • We can apply l'Hôpital's Rule: Suppose is contained in some interval . If   and   exists, and   for all in , then .
Note that the first requirement in l'Hôpital's Rule is that the fraction must be an indeterminate form. This should be shown in your answer for any exam question.
Part (a):  


Return to Sample Exam