Difference between revisions of "009B Sample Midterm 1"

From Math Wiki
Jump to navigation Jump to search
Line 14: Line 14:
  
 
== [[009B_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[009B_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
<span class="exam"> Otis Taylor plots the price per share of a stock that he owns as a function of time
+
<span class="exam">Evaluate the indefinite and definite integrals.
  
<span class="exam">and finds that it can be approximated by the function
+
<span class="exam">(a) &nbsp; <math>\int x^2\sqrt{1+x^3}~dx</math>
  
::<math>s(t)=t(25-5t)+18</math>
+
<span class="exam">(b) &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math>
 
 
<span class="exam">where &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; is the time (in years) since the stock was purchased.
 
 
 
<span class="exam">Find the average price of the stock over the first five years.
 
  
 
== [[009B_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
== [[009B_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==

Revision as of 15:02, 12 November 2017

This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Let  .

(a) Compute the left-hand Riemann sum approximation of    with    boxes.

(b) Compute the right-hand Riemann sum approximation of    with    boxes.

(c) Express    as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.

 Problem 2 

Evaluate the indefinite and definite integrals.

(a)  

(b)  

 Problem 3 

Evaluate the indefinite and definite integrals.

(a)  

(b)  

 Problem 4 

Evaluate the integral:

 Problem 5 

Let  .

(a) Compute the left-hand Riemann sum approximation of    with    boxes.

(b) Compute the right-hand Riemann sum approximation of    with    boxes.

(c) Express    as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.


Contributions to this page were made by Kayla Murray