|
|
| Line 6: |
Line 6: |
| | | | |
| | <span class="exam">(b) Show that at time <math style="vertical-align: -4px">t=5,</math> the size of the population is half its limiting size. | | <span class="exam">(b) Show that at time <math style="vertical-align: -4px">t=5,</math> the size of the population is half its limiting size. |
| | + | <hr> |
| | + | [[009A Sample Midterm 1, Problem 2 Detailed Solution|'''<u>Detailed Solution with Background Information</u>''']] |
| | | | |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| + | [[File:9ASM1P2.jpg|600px|thumb|center]] |
| − | !Foundations:
| |
| − | |-
| |
| − | |'''1.''' If <math style="vertical-align: -15px">\lim_{x\rightarrow a^-} f(x)=\lim_{x\rightarrow a^+} f(x)=c,</math>
| |
| − | |-
| |
| − | | then <math style="vertical-align: -12px">\lim_{x\rightarrow a} f(x)=c.</math>
| |
| − | |-
| |
| − | |'''2.''' <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: 0px">x=a</math> if
| |
| − | |- | |
| − | | <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math> | |
| − | |} | |
| | | | |
| − |
| |
| − | '''Solution:'''
| |
| − |
| |
| − | '''(a)'''
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |Notice that we are calculating a left hand limit.
| |
| − | |-
| |
| − | |Thus, we are looking at values of <math style="vertical-align: 0px">x</math> that are smaller than <math style="vertical-align: -1px">1.</math>
| |
| − | |-
| |
| − | |Using the definition of <math style="vertical-align: -5px">f(x),</math> we have
| |
| − | |-
| |
| − | | <math>\lim_{x\rightarrow 1^-} f(x)=\lim_{x\rightarrow 1^-} x^2.</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Now, we have
| |
| − | |-
| |
| − | |
| |
| − | <math>\begin{array}{rcl}
| |
| − | \displaystyle{\lim_{x\rightarrow 1^-} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^-} x^2}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\lim_{x\rightarrow 1} x^2}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{1^2}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{1.}\\
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − | '''(b)'''
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |Notice that we are calculating a right hand limit.
| |
| − | |-
| |
| − | |Thus, we are looking at values of <math style="vertical-align: 0px">x</math> that are bigger than <math style="vertical-align: -2px">1.</math>
| |
| − | |-
| |
| − | |Using the definition of <math style="vertical-align: -5px">f(x),</math> we have
| |
| − | |-
| |
| − | | <math>\lim_{x\rightarrow 1^+} f(x)=\lim_{x\rightarrow 1^+} \sqrt{x}.</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Now, we have
| |
| − | |-
| |
| − | |
| |
| − | <math>\begin{array}{rcl}
| |
| − | \displaystyle{\lim_{x\rightarrow 1^+} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^+} \sqrt{x}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\lim_{x\rightarrow 1} \sqrt{x}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\sqrt{1}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{1.}\\
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − | '''(c)'''
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |From (a) and (b), we have
| |
| − | |-
| |
| − | | <math>\lim_{x\rightarrow 1^-}f(x)=1</math>
| |
| − | |-
| |
| − | |and
| |
| − | |-
| |
| − | | <math>\lim_{x\rightarrow 1^+}f(x)=1.</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Since
| |
| − | |-
| |
| − | | <math>\lim_{x\rightarrow 1^-}f(x)=\lim_{x\rightarrow 1^+}f(x)=1,</math>
| |
| − | |-
| |
| − | |we have
| |
| − | |-
| |
| − | | <math>\lim_{x\rightarrow 1}f(x)=1.</math>
| |
| − | |}
| |
| − |
| |
| − | '''(d)'''
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |From (c), we have
| |
| − | |-
| |
| − | | <math>\lim_{x\rightarrow 1}f(x)=1.</math>
| |
| − | |-
| |
| − | |Also,
| |
| − | |-
| |
| − | | <math>f(1)=\sqrt{1}=1.</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Since
| |
| − | |-
| |
| − | | <math>\lim_{x\rightarrow 1}f(x)=f(1),</math>
| |
| − | |-
| |
| − | |<math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: -1px">x=1.</math>
| |
| − | |-
| |
| − | |
| |
| − | |}
| |
| − |
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Final Answer:
| |
| − | |-
| |
| − | | '''(a)''' <math>1</math>
| |
| − | |-
| |
| − | | '''(b)''' <math>1</math>
| |
| − | |-
| |
| − | | '''(c)''' <math>1</math>
| |
| − | |-
| |
| − | | '''(d)''' <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: -1px">x=1</math> since <math style="vertical-align: -12px">\lim_{x\rightarrow 1}f(x)=f(1).</math>
| |
| − | |}
| |
| | [[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | | [[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Suppose the size of a population at time Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t}
is given by
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N(t)=\frac{1000t}{5+t},~t\ge 0.}
(a) Determine the size of the population as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\rightarrow \infty.}
We call this the limiting population size.
(b) Show that at time Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=5,}
the size of the population is half its limiting size.
Detailed Solution with Background Information
Return to Sample Exam