Difference between revisions of "009A Sample Midterm 1, Problem 2"

From Math Wiki
Jump to navigation Jump to search
Line 6: Line 6:
  
 
<span class="exam">(b) Show that at time &nbsp;<math style="vertical-align: -4px">t=5,</math>&nbsp; the size of the population is half its limiting size.
 
<span class="exam">(b) Show that at time &nbsp;<math style="vertical-align: -4px">t=5,</math>&nbsp; the size of the population is half its limiting size.
 +
<hr>
 +
[[009A Sample Midterm 1, Problem 2 Detailed Solution|'''<u>Detailed Solution with Background Information</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[File:9ASM1P2.jpg|600px|thumb|center]]
!Foundations: &nbsp;
 
|-
 
|'''1.''' If &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow a^-} f(x)=\lim_{x\rightarrow a^+} f(x)=c,</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow a} f(x)=c.</math>
 
|-
 
|'''2.''' &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=a</math>&nbsp; if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math>
 
|}
 
  
 
'''Solution:'''
 
 
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Notice that we are calculating a left hand limit.
 
|-
 
|Thus, we are looking at values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; that are smaller than &nbsp;<math style="vertical-align: -1px">1.</math>
 
|-
 
|Using the definition of &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-} f(x)=\lim_{x\rightarrow 1^-} x^2.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 1^-} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^-} x^2}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 1} x^2}\\
 
&&\\
 
& = & \displaystyle{1^2}\\
 
&&\\
 
& = & \displaystyle{1.}\\
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Notice that we are calculating a right hand limit.
 
|-
 
|Thus, we are looking at values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; that are bigger than &nbsp;<math style="vertical-align: -2px">1.</math>
 
|-
 
|Using the definition of &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^+} f(x)=\lim_{x\rightarrow 1^+} \sqrt{x}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 1^+} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^+} \sqrt{x}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 1} \sqrt{x}}\\
 
&&\\
 
& = & \displaystyle{\sqrt{1}}\\
 
&&\\
 
& = & \displaystyle{1.}\\
 
\end{array}</math>
 
|}
 
 
'''(c)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|From (a) and (b), we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-}f(x)=1</math>
 
|-
 
|and
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^+}f(x)=1.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-}f(x)=\lim_{x\rightarrow 1^+}f(x)=1,</math>
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=1.</math>
 
|}
 
 
'''(d)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|From (c), we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=1.</math>
 
|-
 
|Also,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>f(1)=\sqrt{1}=1.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=f(1),</math>
 
|-
 
|<math style="vertical-align: -5px">f(x)</math> &nbsp;is continuous at &nbsp;<math style="vertical-align: -1px">x=1.</math>
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|&nbsp; &nbsp; '''(d)''' &nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: -1px">x=1</math>&nbsp; since &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 1}f(x)=f(1).</math>
 
|}
 
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 08:45, 7 November 2017

Suppose the size of a population at time    is given by

(a) Determine the size of the population as    We call this the limiting population size.

(b) Show that at time    the size of the population is half its limiting size.


Detailed Solution with Background Information

9ASM1P2.jpg

Return to Sample Exam