Difference between revisions of "009A Sample Midterm 1, Problem 2"

From Math Wiki
Jump to navigation Jump to search
Line 6: Line 6:
  
 
<span class="exam">(b) Show that at time &nbsp;<math style="vertical-align: -4px">t=5,</math>&nbsp; the size of the population is half its limiting size.
 
<span class="exam">(b) Show that at time &nbsp;<math style="vertical-align: -4px">t=5,</math>&nbsp; the size of the population is half its limiting size.
 +
<hr>
 +
[[009A Sample Midterm 1, Problem 2 Detailed Solution|'''<u>Detailed Solution with Background Information</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[File:9ASM1P2.jpg|600px|thumb|center]]
!Foundations: &nbsp;
 
|-
 
|'''1.''' If &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow a^-} f(x)=\lim_{x\rightarrow a^+} f(x)=c,</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow a} f(x)=c.</math>
 
|-
 
|'''2.''' &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=a</math>&nbsp; if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math>
 
|}
 
  
 
'''Solution:'''
 
 
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Notice that we are calculating a left hand limit.
 
|-
 
|Thus, we are looking at values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; that are smaller than &nbsp;<math style="vertical-align: -1px">1.</math>
 
|-
 
|Using the definition of &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-} f(x)=\lim_{x\rightarrow 1^-} x^2.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 1^-} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^-} x^2}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 1} x^2}\\
 
&&\\
 
& = & \displaystyle{1^2}\\
 
&&\\
 
& = & \displaystyle{1.}\\
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Notice that we are calculating a right hand limit.
 
|-
 
|Thus, we are looking at values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; that are bigger than &nbsp;<math style="vertical-align: -2px">1.</math>
 
|-
 
|Using the definition of &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^+} f(x)=\lim_{x\rightarrow 1^+} \sqrt{x}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 1^+} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^+} \sqrt{x}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 1} \sqrt{x}}\\
 
&&\\
 
& = & \displaystyle{\sqrt{1}}\\
 
&&\\
 
& = & \displaystyle{1.}\\
 
\end{array}</math>
 
|}
 
 
'''(c)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|From (a) and (b), we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-}f(x)=1</math>
 
|-
 
|and
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^+}f(x)=1.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-}f(x)=\lim_{x\rightarrow 1^+}f(x)=1,</math>
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=1.</math>
 
|}
 
 
'''(d)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|From (c), we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=1.</math>
 
|-
 
|Also,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>f(1)=\sqrt{1}=1.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=f(1),</math>
 
|-
 
|<math style="vertical-align: -5px">f(x)</math> &nbsp;is continuous at &nbsp;<math style="vertical-align: -1px">x=1.</math>
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|&nbsp; &nbsp; '''(d)''' &nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: -1px">x=1</math>&nbsp; since &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 1}f(x)=f(1).</math>
 
|}
 
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 08:45, 7 November 2017

Suppose the size of a population at time  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t}   is given by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N(t)=\frac{1000t}{5+t},~t\ge 0.}

(a) Determine the size of the population as  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\rightarrow \infty.}   We call this the limiting population size.

(b) Show that at time  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=5,}   the size of the population is half its limiting size.


Detailed Solution with Background Information

9ASM1P2.jpg

Return to Sample Exam