Difference between revisions of "009C Sample Midterm 2, Problem 5"

From Math Wiki
Jump to navigation Jump to search
Line 45: Line 45:
 
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}x^{n+1}}{c_nx^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{c_n}\bigg|}\\
 
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}x^{n+1}}{c_nx^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{c_n}\bigg|}\\
 
&&\\
 
&&\\
& = & \displaystyle{|x|\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.}
+
& = & \displaystyle{|x|\lim_{n\rightarrow \infty}\bigg(\frac{c_{n+1}}{c_n}\bigg).}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
 
|Since the radius of convergence of the series &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">R,</math>&nbsp; we have
 
|Since the radius of convergence of the series &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">R,</math>&nbsp; we have
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>R=\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>R=\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{c_{n+1}}{c_n}\bigg)}}.</math>
 
|}
 
|}
  
Line 63: Line 63:
 
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}2^nx^{n+1}}{c_n2^{n+1}x^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{2c_n}\bigg|}\\
 
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}2^nx^{n+1}}{c_n2^{n+1}x^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{2c_n}\bigg|}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{|x|}{2}\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.}
+
& = & \displaystyle{\frac{|x|}{2}\lim_{n\rightarrow \infty}\bigg(\frac{c_{n+1}}{c_n}\bigg).}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
 
|Hence, the radius of convergence of this power series is  
 
|Hence, the radius of convergence of this power series is  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{2}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}=2R.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{2}{\displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{c_{n+1}}{c_n}\bigg)}}=2R.</math>
 
|-
 
|-
 
|Therefore, this power series converges.  
 
|Therefore, this power series converges.  
Line 89: Line 89:
 
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}x^{n+1}}{c_nx^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{c_n}\bigg|}\\
 
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}x^{n+1}}{c_nx^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{c_n}\bigg|}\\
 
&&\\
 
&&\\
& = & \displaystyle{|x|\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.}
+
& = & \displaystyle{|x|\lim_{n\rightarrow \infty}\bigg(\frac{c_{n+1}}{c_n}\bigg).}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
 
|Since the radius of convergence of the series &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">R,</math>&nbsp; we have
 
|Since the radius of convergence of the series &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">R,</math>&nbsp; we have
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>R=\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>R=\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{c_{n+1}}{c_n}\bigg)}}.</math>
 
|}
 
|}
  
Line 107: Line 107:
 
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}(-x)^{n+1}}{c_n(-x)^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}(-x)}{c_n}\bigg|}\\
 
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}(-x)^{n+1}}{c_n(-x)^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}(-x)}{c_n}\bigg|}\\
 
&&\\
 
&&\\
& = & \displaystyle{|x|\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.}
+
& = & \displaystyle{|x|\lim_{n\rightarrow \infty}\bigg(\frac{c_{n+1}}{c_n}\bigg).}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
 
|Hence, the radius of convergence of this power series is  
 
|Hence, the radius of convergence of this power series is  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}=R.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{c_{n+1}}{c_n}\bigg)}}=R.</math>
 
|-
 
|-
 
|Therefore, this power series converges.
 
|Therefore, this power series converges.

Revision as of 12:46, 24 April 2017

If    converges, does it follow that the following series converges?

(a)  

(b)  


Foundations:  
Ratio Test
        Let    be a series and  
        Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.


Solution:

(a)

Step 1:  
Assume that the power series    converges.
Let    be the radius of convergence of this power series.
We can use the Ratio Test to find   
Using the Ratio Test, we have

       

Since the radius of convergence of the series    is    we have
       
Step 2:  
Now, we use the Ratio Test to find the radius of convergence of the series
Using the Ratio Test, we have
       
Hence, the radius of convergence of this power series is
       
Therefore, this power series converges.

(b)

Step 1:  
Assume that the power series    converges.
Let    be the radius of convergence of this power series.
We can use the Ratio Test to find   
Using the Ratio Test, we have

       

Since the radius of convergence of the series    is    we have
       
Step 2:  
Now, we use the Ratio Test to find the radius of convergence of the series
Using the Ratio Test, we have
       
Hence, the radius of convergence of this power series is
       
Therefore, this power series converges.


Final Answer:  
    (a)     converges
    (b)     converges

Return to Sample Exam