Difference between revisions of "009C Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Line 10: | Line 10: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |If | + | |'''Ratio Test''' |
+ | |- | ||
+ | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> | ||
+ | |- | ||
+ | | Then, | ||
+ | |- | ||
+ | | | ||
+ | If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent. | ||
+ | |- | ||
+ | | | ||
+ | If <math style="vertical-align: -4px">L>1,</math> the series is divergent. | ||
+ | |- | ||
+ | | | ||
+ | If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. | ||
|} | |} | ||
Line 24: | Line 37: | ||
|Let <math style="vertical-align: 0px">R</math> be the radius of convergence of this power series. | |Let <math style="vertical-align: 0px">R</math> be the radius of convergence of this power series. | ||
|- | |- | ||
− | | | + | |We can use the Ratio Test to find <math style="vertical-align: 0px">R.</math> |
|- | |- | ||
− | | | + | |Using the Ratio Test, we have |
|- | |- | ||
− | | | + | | |
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}x^{n+1}}{c_nx^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{c_n}\bigg|}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{|x|\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Since the radius of convergence of the series <math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math> is <math style="vertical-align: -5px">R,</math> we have | ||
+ | |- | ||
+ | | <math>R=\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}.</math> | ||
|} | |} | ||
Line 34: | Line 56: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we use the Ratio Test to find the radius of convergence of the series <math style="vertical-align: -19px">\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n.</math> |
|- | |- | ||
− | | | + | |Using the Ratio Test, we have |
|- | |- | ||
− | | <math>\ | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}2^nx^{n+1}}{c_n2^{n+1}x^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{2c_n}\bigg|}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{|x|}{2}\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.} | ||
+ | \end{array}</math> | ||
|- | |- | ||
− | | | + | |Hence, the radius of convergence of this power series is |
|- | |- | ||
− | | <math>\ | + | | <math>\frac{2}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}=2R.</math> |
|- | |- | ||
− | |converges | + | |Therefore, this power series converges. |
|} | |} | ||
Line 55: | Line 81: | ||
|Let <math style="vertical-align: 0px">R</math> be the radius of convergence of this power series. | |Let <math style="vertical-align: 0px">R</math> be the radius of convergence of this power series. | ||
|- | |- | ||
− | | | + | |We can use the Ratio Test to find <math style="vertical-align: 0px">R.</math> |
+ | |- | ||
+ | |Using the Ratio Test, we have | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}x^{n+1}}{c_nx^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{c_n}\bigg|}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{|x|\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.} | ||
+ | \end{array}</math> | ||
|- | |- | ||
− | | | + | |Since the radius of convergence of the series <math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math> is <math style="vertical-align: -5px">R,</math> we have |
|- | |- | ||
− | | | + | | <math>R=\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}.</math> |
|} | |} | ||
Line 65: | Line 100: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we use the Ratio Test to find the radius of convergence of the series <math style="vertical-align: -19px">\sum_{n=0}^\infty c_n(-x)^n .</math> |
|- | |- | ||
− | | | + | |Using the Ratio Test, we have |
|- | |- | ||
− | | <math>\ | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}(-x)^{n+1}}{c_n(-x)^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}(-x)}{c_n}\bigg|}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{|x|\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.} | ||
+ | \end{array}</math> | ||
|- | |- | ||
− | | | + | |Hence, the radius of convergence of this power series is |
|- | |- | ||
− | | <math>\ | + | | <math>\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}=R.</math> |
|- | |- | ||
− | |converges | + | |Therefore, this power series converges. |
|} | |} | ||
Revision as of 11:55, 24 April 2017
If converges, does it follow that the following series converges?
(a)
(b)
Foundations: |
---|
Ratio Test |
Let be a series and |
Then, |
If the series is absolutely convergent. |
If the series is divergent. |
If the test is inconclusive. |
Solution:
(a)
Step 1: |
---|
Assume that the power series converges. |
Let be the radius of convergence of this power series. |
We can use the Ratio Test to find |
Using the Ratio Test, we have |
|
Since the radius of convergence of the series is we have |
Step 2: |
---|
Now, we use the Ratio Test to find the radius of convergence of the series |
Using the Ratio Test, we have |
Hence, the radius of convergence of this power series is |
Therefore, this power series converges. |
(b)
Step 1: |
---|
Assume that the power series converges. |
Let be the radius of convergence of this power series. |
We can use the Ratio Test to find |
Using the Ratio Test, we have |
|
Since the radius of convergence of the series is we have |
Step 2: |
---|
Now, we use the Ratio Test to find the radius of convergence of the series |
Using the Ratio Test, we have |
Hence, the radius of convergence of this power series is |
Therefore, this power series converges. |
Final Answer: |
---|
(a) converges |
(b) converges |