Difference between revisions of "009A Sample Midterm 1"
Line 14: | Line 14: | ||
== [[009A_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | == [[009A_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
+ | <span class="exam">Suppose the size of a population at time <math style="vertical-align: 0px">t</math> is given by | ||
+ | |||
+ | ::<math>N(t)=\frac{1000t}{5+t},~t\ge 0.</math> | ||
+ | |||
+ | <span class="exam">(a) Determine the size of the population as <math style="vertical-align: -1px">t\rightarrow \infty.</math> We call this the limiting population size. | ||
+ | |||
+ | <span class="exam">(b) Show that at time <math style="vertical-align: -4px">t=5,</math> the size of the population is half its limiting size. | ||
+ | |||
+ | == [[009A_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | ||
<span class="exam">Consider the following function <math style="vertical-align: -5px"> f:</math> | <span class="exam">Consider the following function <math style="vertical-align: -5px"> f:</math> | ||
::<math>f(x) = \left\{ | ::<math>f(x) = \left\{ | ||
Line 31: | Line 40: | ||
<span class="exam">(d) Is <math style="vertical-align: -5px">f</math> continuous at <math style="vertical-align: -1px">x=1?</math> Briefly explain. | <span class="exam">(d) Is <math style="vertical-align: -5px">f</math> continuous at <math style="vertical-align: -1px">x=1?</math> Briefly explain. | ||
− | == [[009A_Sample Midterm 1, | + | == [[009A_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == |
<span class="exam"> Let <math style="vertical-align: -5px">y=\sqrt{3x-5}.</math> | <span class="exam"> Let <math style="vertical-align: -5px">y=\sqrt{3x-5}.</math> | ||
Line 38: | Line 47: | ||
<span class="exam">(b) Find the equation of the tangent line to <math style="vertical-align: -5px">y=\sqrt{3x-5}</math> at <math style="vertical-align: -5px">(2,1).</math> | <span class="exam">(b) Find the equation of the tangent line to <math style="vertical-align: -5px">y=\sqrt{3x-5}</math> at <math style="vertical-align: -5px">(2,1).</math> | ||
− | == [[009A_Sample Midterm 1, | + | == [[009A_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == |
<span class="exam"> Find the derivatives of the following functions. Do not simplify. | <span class="exam"> Find the derivatives of the following functions. Do not simplify. | ||
Line 46: | Line 55: | ||
<span class="exam">(c) <math style="vertical-align: -20px">h(x)=\frac{e^{-5x^3}}{\sqrt{x^2+1}}</math> | <span class="exam">(c) <math style="vertical-align: -20px">h(x)=\frac{e^{-5x^3}}{\sqrt{x^2+1}}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
'''Contributions to this page were made by [[Contributors|Kayla Murray]]''' | '''Contributions to this page were made by [[Contributors|Kayla Murray]]''' |
Latest revision as of 07:26, 7 November 2017
This is a sample, and is meant to represent the material usually covered in Math 9A for the midterm. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
Find the following limits:
(a) Find provided that
(b) Find
(c) Evaluate
Problem 2
Suppose the size of a population at time is given by
(a) Determine the size of the population as We call this the limiting population size.
(b) Show that at time the size of the population is half its limiting size.
Problem 3
Consider the following function
(a) Find
(b) Find
(c) Find
(d) Is continuous at Briefly explain.
Problem 4
Let
(a) Use the definition of the derivative to compute for
(b) Find the equation of the tangent line to at
Problem 5
Find the derivatives of the following functions. Do not simplify.
(a)
(b) where
(c)
Contributions to this page were made by Kayla Murray