Difference between revisions of "009A Sample Midterm 2, Problem 1"

From Math Wiki
Jump to navigation Jump to search
 
Line 6: Line 6:
  
 
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -20px">\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math>
 
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -20px">\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math>
 +
<hr>
 +
[[009A Sample Midterm 2, Problem 1 Solution|'''<u>Solution</u>''']]
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009A Sample Midterm 2, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Foundations: &nbsp;
 
|-
 
|Recall
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
 
|}
 
  
  
'''Solution:'''
 
 
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We begin by noticing that if we plug in &nbsp;<math style="vertical-align: 0px">x=2</math>&nbsp; into
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\sqrt{x^2+12}-4}{x-2},</math>
 
|-
 
|we get &nbsp; <math style="vertical-align: -12px">\frac{0}{0}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we multiply the numerator and denominator by the conjugate of the numerator.
 
|-
 
|Hence, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}} & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(\sqrt{x^2+12}-4)}{(x-2)}\frac{(\sqrt{x^2+12}+4)}{(\sqrt{x^2+12}+4)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x^2+12)-16}{(x-2)(\sqrt{x^2+12}+4)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 2} \frac{x^2-4}{(x-2)(\sqrt{x^2+12}+4)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(\sqrt{x^2+12}+4)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 2} \frac{x+2}{\sqrt{x^2+12}+4}}\\
 
&&\\
 
& = & \displaystyle{\frac{4}{8}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we write
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{x} \frac{x}{\sin(7x)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{3}{7} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{7}\bigg(\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{7x}{\sin(7x)}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{7} (1)(1)}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{7}.}
 
\end{array}</math>
 
|}
 
 
'''(c)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We begin by looking at the graph of &nbsp;<math style="vertical-align: -5px">y=\tan(x),</math>
 
|-
 
|which is displayed below.
 
|-
 
|[[File:009A_MT2_1C_GP.png|center|325px]]
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We are taking a left hand limit. So, we approach &nbsp;<math style="vertical-align: -13px">x=\frac{\pi}{2}</math> &nbsp; from the left.
 
|-
 
|If we look at the graph from the left of &nbsp;<math style="vertical-align: -13px">x=\frac{\pi}{2}</math> &nbsp; and go towards &nbsp; <math style="vertical-align: -13px">\frac{\pi}{2},</math>
 
|-
 
|we see that &nbsp;<math style="vertical-align: -5px">\tan(x)</math> &nbsp; goes to &nbsp;<math style="vertical-align: -2px">\infty.</math>
 
|-
 
|Therefore,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x)=\infty.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{1}{2}</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{3}{7}</math>
 
|-
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>\infty</math>
 
|}
 
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 11:04, 11 November 2017

Evaluate the following limits.

(a) Find  

(b) Find  

(c) Evaluate  


Solution


Detailed Solution


Return to Sample Exam