Difference between revisions of "009A Sample Midterm 1, Problem 1"

From Math Wiki
Jump to navigation Jump to search
Line 6: Line 6:
  
 
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -14px">\lim _{x\rightarrow -3^+} \frac{x}{x^2-9} </math>
 
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -14px">\lim _{x\rightarrow -3^+} \frac{x}{x^2-9} </math>
 +
<hr>
 +
[[009A Sample Midterm 1, Problem 1 Detailed Solution|'''<u>Detailed Solution with Background Information</u>''']]
  
 +
[[File:9ASM1P1.jpg|600px|thumb|center]]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
| '''1.''' If &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow a} g(x)\neq 0,</math>&nbsp; we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>
 
|-
 
| '''2.''' Recall
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
 
|}
 
 
 
'''Solution:'''
 
 
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Since &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 2} x =2\ne 0,</math>
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{5} & = & \displaystyle{\lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]}\\
 
&&\\
 
& = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 2} (4-g(x))}}{\displaystyle{\lim_{x\rightarrow 2} x}}}\\
 
&&\\
 
& = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 2} (4-g(x))}}{2}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|If we multiply both sides of the last equation by &nbsp;<math>2,</math>&nbsp; we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>10=\lim_{x\rightarrow 2} (4-g(x)).</math>
 
|-
 
|Now, using linearity properties of limits, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{10} & = & \displaystyle{\lim_{x\rightarrow 2} 4 -\lim_{x\rightarrow 2}g(x)}\\
 
&&\\
 
& = & \displaystyle{4-\lim_{x\rightarrow 2} g(x).}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Solving for &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 2} g(x)</math>&nbsp; in the last equation,
 
|-
 
|we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math> \lim_{x\rightarrow 2} g(x)=-6.</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we write
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 0} \frac{\sin(4x)}{5x}=\lim_{x\rightarrow 0} \frac{4}{5} \bigg(\frac{\sin(4x)}{4x}\bigg).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin(4x)}{5x}} & = & \displaystyle{\frac{4}{5}\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}}\\
 
&&\\
 
& = & \displaystyle{\frac{4}{5}(1)}\\
 
&&\\
 
& = & \displaystyle{\frac{4}{5}.}
 
\end{array}</math>
 
|}
 
 
'''(c)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|When we plug in values close to &nbsp;<math style="vertical-align: 0px">-3</math>&nbsp; into &nbsp; <math style="vertical-align: -12px">\frac{x}{x^2-9},</math>
 
|-
 
|we get a small denominator, which results in a large number.
 
|-
 
|Thus,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}</math>
 
|-
 
|is either equal to &nbsp;<math style="vertical-align: -1px">\infty</math>&nbsp; or &nbsp;<math style="vertical-align: -1px">-\infty.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|To figure out which one, we factor the denominator to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}=\lim_{x\rightarrow -3^+} \frac{x}{(x-3)(x+3)}.</math>
 
|-
 
|We are taking a right hand limit. So, we are looking at values of &nbsp;<math style="vertical-align: 0px">x</math>
 
|-
 
|a little bigger than &nbsp;<math style="vertical-align: 0px">-3.</math>&nbsp; (You can imagine values like &nbsp;<math style="vertical-align: 0px">x=-2.9.</math>&nbsp;)
 
|-
 
|For these values, the numerator will be negative. 
 
|-
 
|Also, for these values, &nbsp;<math style="vertical-align: 0px">x-3</math>&nbsp; will be negative and &nbsp;<math style="vertical-align: -1px">x+3</math>&nbsp; will be positive.
 
|-
 
|Therefore, the denominator will be negative.
 
|-
 
|Since both the numerator and denominator will be negative (have the same sign),
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}=\infty.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math> -6</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{4}{5}</math>
 
|-
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>\infty</math>
 
|}
 
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 07:24, 7 November 2017

Find the following limits:

(a) Find    provided that  

(b) Find  

(c) Evaluate  


Detailed Solution with Background Information

9ASM1P1.jpg

Return to Sample Exam