Difference between revisions of "009A Sample Midterm 1, Problem 5"

From Math Wiki
Jump to navigation Jump to search
Line 35: Line 35:
 
& = & \displaystyle{0-\frac{1}{4}(-1)}\\
 
& = & \displaystyle{0-\frac{1}{4}(-1)}\\
 
&&\\
 
&&\\
&= & \displaystyle{\frac{1}{4} \text{ foot}.}
+
&= & \displaystyle{\frac{1}{4} \text{ ft}.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 61: Line 61:
 
& = & \displaystyle{-4(-1)+0}\\
 
& = & \displaystyle{-4(-1)+0}\\
 
&&\\
 
&&\\
& = & \displaystyle{4 \text{ feet/second}.}
+
& = & \displaystyle{4 \text{ ft/sec}.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 69: Line 69:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; position is &nbsp;<math>\frac{1}{4} \text{ foot}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; position is &nbsp;<math>\frac{1}{4} \text{ ft}.</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; velocity is &nbsp;<math>4 \text{ feet/second}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; velocity is &nbsp;<math>4 \text{ ft/sec}.</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:27, 13 April 2017

The displacement from equilibrium of an object in harmonic motion on the end of a spring is:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\frac{1}{3}\cos(12t)-\frac{1}{4}\sin(12t)}

where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y}   is measured in feet and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t}   is the time in seconds.

Determine the position and velocity of the object when  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=\frac{\pi}{8}.}


Foundations:  
What is the relationship between the position  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(t)}   and the velocity  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v(t)}   of an object?
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle v(t)=s'(t)}


Solution:

Step 1:  
To find the position of the object at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=\frac{\pi}{8},}
we need to plug  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=\frac{\pi}{8}}   into the equation  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y.}
Thus, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{y\bigg(\frac{\pi}{8}\bigg)} & = & \displaystyle{\frac{1}{3}\cos\bigg(\frac{12\pi}{8}\bigg)-\frac{1}{4}\sin\bigg(\frac{12\pi}{8}\bigg)}\\ &&\\ & = & \displaystyle{\frac{1}{3}\cos\bigg(\frac{3\pi}{2}\bigg)-\frac{1}{4}\sin\bigg(\frac{3\pi}{2}\bigg)}\\ &&\\ & = & \displaystyle{0-\frac{1}{4}(-1)}\\ &&\\ &= & \displaystyle{\frac{1}{4} \text{ ft}.} \end{array}}
Step 2:  
Now, to find the velocity function, we need to take the derivative of the position function.
Thus, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{v(t)} & = & \displaystyle{y'}\\ &&\\ & = & \displaystyle{\frac{-1}{3}\sin(12t)(12)-\frac{1}{4}\cos(12t)(12)}\\ &&\\ & = & \displaystyle{-4\sin(12t)-3\cos(12t).} \end{array}}
Therefore, the velocity of the object at time  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=\frac{\pi}{8}}   is
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{v\bigg(\frac{\pi}{8}\bigg)} & = & \displaystyle{-4\sin\bigg(\frac{3\pi}{2}\bigg)-3\cos\bigg(\frac{3\pi}{2}\bigg)}\\ &&\\ & = & \displaystyle{-4(-1)+0}\\ &&\\ & = & \displaystyle{4 \text{ ft/sec}.} \end{array}}


Final Answer:  
        position is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{4} \text{ ft}.}
        velocity is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 \text{ ft/sec}.}

Return to Sample Exam