Difference between revisions of "009B Sample Final 1, Problem 3"

From Math Wiki
Jump to navigation Jump to search
Line 30: Line 30:
 
|First, we graph these two functions.
 
|First, we graph these two functions.
 
|-
 
|-
|
+
|Insert graph here
 
|}
 
|}
  
Line 36: Line 36:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|Setting &nbsp;<math style="vertical-align: -4px">\cos x=1-\cos x,</math>&nbsp; we get &nbsp;<math style="vertical-align: 0px">2\cos x=2.</math>
+
|Setting &nbsp;<math style="vertical-align: -4px">\cos x=2-\cos x,</math>&nbsp; we get &nbsp;<math style="vertical-align: 0px">2\cos x=2.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have

Revision as of 17:05, 20 May 2017

Consider the area bounded by the following two functions:

  and  

(a) Sketch the graphs and find their points of intersection.

(b) Find the area bounded by the two functions.

Foundations:  
1. You can find the intersection points of two functions, say  

       by setting    and solving for  

2. The area between two functions,    and    is given by  

       for    where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is the upper function and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)}   is the lower function.


Solution:

(a)

Step 1:  
First, we graph these two functions.
Insert graph here
Step 2:  
Setting  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos x=2-\cos x,}   we get  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cos x=2.}
Therefore, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos x=1.}
In the interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\le x\le 2\pi,}   the solutions to this equation are
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2\pi.}
Plugging these values into our equations,
we get the intersection points  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,1)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2\pi,1).}
You can see these intersection points on the graph shown in Step 1.

(b)

Step 1:  
The area bounded by the two functions is given by

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{2\pi} (2-\cos x)-\cos x~dx.}

Step 2:  
Lastly, we integrate to get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^{2\pi} (2-\cos x)-\cos x~dx} & {=} & \displaystyle{\int_0^{2\pi} 2-2\cos x~dx}\\ &&\\ & = & \displaystyle{(2x-2\sin x)\bigg|_0^{2\pi}}\\ &&\\ & = & \displaystyle{(4\pi-2\sin(2\pi))-(0-2\sin(0))}\\ &&\\ & = & \displaystyle{4\pi.}\\ \end{array}}


Final Answer:  
   (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,1),(2\pi,1)}   (See Step 1 above for graph)
   (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\pi}

Return to Sample Exam