Difference between revisions of "009C Sample Midterm 1, Problem 1"
(Created page with "<span class="exam"> Does the following sequence converge or diverge? <span class="exam"> If the sequence converges, also find the limit of the sequence. <span class="exam"...") |
|||
| Line 11: | Line 11: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |'''L'Hôpital's Rule''' | + | |'''L'Hôpital's Rule, Part 2''' |
|- | |- | ||
| | | | ||
| − | | + | Let <math style="vertical-align: -5px">f</math> and <math style="vertical-align: -5px">g</math> be differentiable functions on the open interval <math style="vertical-align: -5px">(a,\infty)</math> for some value <math style="vertical-align: -4px">a,</math> |
|- | |- | ||
| − | | | + | | where <math style="vertical-align: -5px">g'(x)\ne 0</math> on <math style="vertical-align: -5px">(a,\infty)</math> and <math style="vertical-align: -18px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}</math> returns either <math style="vertical-align: -15px">\frac{0}{0}</math> or <math style="vertical-align: -15px">\frac{\infty}{\infty}.</math> |
| − | | ||
|- | |- | ||
| − | | | + | | Then, <math style="vertical-align: -18px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> |
| − | | ||
|} | |} | ||
Revision as of 08:52, 16 April 2017
Does the following sequence converge or diverge?
If the sequence converges, also find the limit of the sequence.
Be sure to jusify your answers!
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n=\frac{\ln n}{n}}
| Foundations: |
|---|
| L'Hôpital's Rule, Part 2 |
|
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} be differentiable functions on the open interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,\infty)} for some value Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a,} |
| where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)\ne 0} on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,\infty)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}} returns either or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\infty}{\infty}.} |
| Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.} |
Solution:
| Step 1: |
|---|
| First, notice that |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} \ln n =\infty} |
| and |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} n=\infty.} |
| Therefore, the limit has the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\infty}{\infty},} |
| which means that we can use L'Hopital's Rule to calculate this limit. |
| Step 2: |
|---|
| First, switch to the variable Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} so that we have functions and |
| can take derivatives. Thus, using L'Hopital's Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln n}{n}} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln x}{x}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\big(\frac{1}{x}\big)}{1}}\\ &&\\ & = & \displaystyle{0.} \end{array}} |
| Final Answer: |
|---|
| The sequence converges. The limit of the sequence is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.} |