Difference between revisions of "009C Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Does the following sequence converge or diverge? <span class="exam"> If the sequence converges, also find the limit of the sequence. <span class="exam"...") |
|||
Line 11: | Line 11: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |'''L'Hôpital's Rule''' | + | |'''L'Hôpital's Rule, Part 2''' |
|- | |- | ||
| | | | ||
− | | + | Let <math style="vertical-align: -5px">f</math> and <math style="vertical-align: -5px">g</math> be differentiable functions on the open interval <math style="vertical-align: -5px">(a,\infty)</math> for some value <math style="vertical-align: -4px">a,</math> |
|- | |- | ||
− | | | + | | where <math style="vertical-align: -5px">g'(x)\ne 0</math> on <math style="vertical-align: -5px">(a,\infty)</math> and <math style="vertical-align: -18px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}</math> returns either <math style="vertical-align: -15px">\frac{0}{0}</math> or <math style="vertical-align: -15px">\frac{\infty}{\infty}.</math> |
− | | ||
|- | |- | ||
− | | | + | | Then, <math style="vertical-align: -18px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> |
− | | ||
|} | |} | ||
Revision as of 08:52, 16 April 2017
Does the following sequence converge or diverge?
If the sequence converges, also find the limit of the sequence.
Be sure to jusify your answers!
Foundations: |
---|
L'Hôpital's Rule, Part 2 |
Let and be differentiable functions on the open interval for some value |
where on and returns either or |
Then, |
Solution:
Step 1: |
---|
First, notice that |
and |
Therefore, the limit has the form |
which means that we can use L'Hopital's Rule to calculate this limit. |
Step 2: |
---|
First, switch to the variable so that we have functions and |
can take derivatives. Thus, using L'Hopital's Rule, we have |
Final Answer: |
---|
The sequence converges. The limit of the sequence is |